Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(24): e2121138119, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35675422

RESUMO

Rechargeable Zn metal batteries (RZMBs) may provide a more sustainable and lower-cost alternative to established battery technologies in meeting energy storage applications of the future. However, the most promising electrolytes for RZMBs are generally aqueous and require high concentrations of salt(s) to bring efficiencies toward commercially viable levels and mitigate water-originated parasitic reactions including hydrogen evolution and corrosion. Electrolytes based on nonaqueous solvents are promising for avoiding these issues, but full cell performance demonstrations with solvents other than water have been very limited. To address these challenges, we investigated MeOH as an alternative electrolyte solvent. These MeOH-based electrolytes exhibited exceptional Zn reversibility over a wide temperature range, with a Coulombic efficiency > 99.5% at 50% Zn utilization without cell short-circuit behavior for > 1,800 h. More important, this remarkable performance translates well to Zn || metal-free organic cathode full cells, supporting < 6% capacity decay after > 800 cycles at -40 °C.

2.
J Am Chem Soc ; 146(19): 12984-12999, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38709897

RESUMO

Multivalent battery chemistries have been explored in response to the increasing demand for high-energy rechargeable batteries utilizing sustainable resources. Solvation structures of working cations have been recognized as a key component in the design of electrolytes; however, most structure-property correlations of metal ions in organic electrolytes usually build upon favorable static solvation structures, often overlooking solvent exchange dynamics. We here report the ion solvation structures and solvent exchange rates of magnesium electrolytes in various solvents by using multimodal nuclear magnetic resonance (NMR) analysis and molecular dynamics/density functional theory (MD/DFT) calculations. These magnesium solvation structures and solvent exchange dynamics are correlated to the combined effects of several physicochemical properties of the solvents. Moreover, Mg2+ transport and interfacial charge transfer efficiency are found to be closely correlated to the solvent exchange rate in the binary electrolytes where the solvent exchange is tunable by the fraction of diluent solvents. Our primary findings are (1) most battery-related solvents undergo ultraslow solvent exchange coordinating to Mg2+ (with time scales ranging from 0.5 µs to 5 ms), (2) the cation transport mechanism is a mixture of vehicular and structural diffusion even at the ultraslow exchange limit (with faster solvent exchange leading to faster cation transport), and (3) an interfacial model wherein organic-rich regions facilitate desolvation and inorganic regions promote Mg2+ transport is consistent with our NMR, electrochemistry, and cryogenic X-ray photoelectron spectroscopy (cryo-XPS) results. This observed ultraslow solvent exchange and its importance for ion transport and interfacial properties necessitate the judicious selection of solvents and informed design of electrolyte blends for multivalent electrolytes.

3.
J Am Chem Soc ; 145(22): 12181-12192, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37235548

RESUMO

Out-of-equilibrium electrochemical reaction mechanisms are notoriously difficult to characterize. However, such reactions are critical for a range of technological applications. For instance, in metal-ion batteries, spontaneous electrolyte degradation controls electrode passivation and battery cycle life. Here, to improve our ability to elucidate electrochemical reactivity, we for the first time combine computational chemical reaction network (CRN) analysis based on density functional theory (DFT) and differential electrochemical mass spectroscopy (DEMS) to study gas evolution from a model Mg-ion battery electrolyte─magnesium bistriflimide (Mg(TFSI)2) dissolved in diglyme (G2). Automated CRN analysis allows for the facile interpretation of DEMS data, revealing H2O, C2H4, and CH3OH as major products of G2 decomposition. These findings are further explained by identifying elementary mechanisms using DFT. While TFSI- is reactive at Mg electrodes, we find that it does not meaningfully contribute to gas evolution. The combined theoretical-experimental approach developed here provides a means to effectively predict electrolyte decomposition products and pathways when initially unknown.

4.
Proc Natl Acad Sci U S A ; 117(23): 12550-12557, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32513683

RESUMO

Energy storage is an integral part of modern society. A contemporary example is the lithium (Li)-ion battery, which enabled the launch of the personal electronics revolution in 1991 and the first commercial electric vehicles in 2010. Most recently, Li-ion batteries have expanded into the electricity grid to firm variable renewable generation, increasing the efficiency and effectiveness of transmission and distribution. Important applications continue to emerge including decarbonization of heavy-duty vehicles, rail, maritime shipping, and aviation and the growth of renewable electricity and storage on the grid. This perspective compares energy storage needs and priorities in 2010 with those now and those emerging over the next few decades. The diversity of demands for energy storage requires a diversity of purpose-built batteries designed to meet disparate applications. Advances in the frontier of battery research to achieve transformative performance spanning energy and power density, capacity, charge/discharge times, cost, lifetime, and safety are highlighted, along with strategic research refinements made by the Joint Center for Energy Storage Research (JCESR) and the broader community to accommodate the changing storage needs and priorities. Innovative experimental tools with higher spatial and temporal resolution, in situ and operando characterization, first-principles simulation, high throughput computation, machine learning, and artificial intelligence work collectively to reveal the origins of the electrochemical phenomena that enable new means of energy storage. This knowledge allows a constructionist approach to materials, chemistries, and architectures, where each atom or molecule plays a prescribed role in realizing batteries with unique performance profiles suitable for emergent demands.

5.
J Am Chem Soc ; 144(19): 8591-8604, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35470669

RESUMO

Understanding the mechanisms of charge transport in batteries is important for the rational design of new electrolyte formulations. Persistent questions about ion transport mechanisms in battery electrolytes are often framed in terms of vehicular diffusion by persistent ion-solvent complexes versus structural diffusion through the breaking and reformation of ion-solvent contacts, i.e., solvent exchange events. Ultrafast two-dimensional (2D) IR spectroscopy can probe exchange processes directly via the evolution of the cross-peaks on picosecond time scales. However, vibrational energy transfer in the absence of solvent exchange gives rise to the same spectral signatures, hiding the desired processes. We employ 2D IR on solvent resonances of a mixture of acetonitrile isotopologues to differentiate chemical exchange and energy-transfer dynamics in a comprehensive series of Li+, Mg2+, Zn2+, Ca2+, and Ba2+ bis(trifluoromethylsulfonyl)imide electrolytes from the dilute to the superconcentrated regime. No exchange phenomena occur within at least 100 ps, regardless of the ion identity, salt concentration, and presence of water. All of the observed spectral dynamics originate from the intermolecular energy transfer. These results place the lower experimental boundary on the ion-solvent residence times to several hundred picoseconds, much slower than previously suggested. With the help of MD simulations and conductivity measurements on the Li+ and Zn2+ systems, we discuss these results as a continuum of vehicular and structural modalities that vary with concentration and emphasize the importance of collective electrolyte motions to ion transport. These results hold broadly applicable to many battery-relevant ions and solvents.

6.
Phys Chem Chem Phys ; 24(2): 674-686, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34908060

RESUMO

Ion interactions strongly determine the solvation environments of multivalent electrolytes even at concentrations below that required for practical battery-based energy storage. This statement is particularly true of electrolytes utilizing ethereal solvents due to their low dielectric constants. These solvents are among the most commonly used for multivalent batteries based on reactive metals (Mg, Ca) due to their reductive stability. Recent developments in multivalent electrolyte design have produced a variety of new salts for Mg2+ and Ca2+ that test the limits of weak coordination strength and oxidative stability. Such electrolytes have great potential for enabling full-cell cycling of batteries based on these working ions. However, the ion interactions in these electrolytes exhibit significant and non-intuitive concentration relationships. In this work, we investigate a promising exemplar, calcium tetrakis(hexafluoroisopropoxy)borate (Ca(BHFIP)2), in the ethereal solvents 1,2-dimethoxyethane (DME) and tetrahydrofuran (THF) across a concentration range of several orders of magnitude. Surprisingly, we find that effective salt dissociation is lower at relatively dilute concentrations (e.g. 0.01 M) than at higher concentrations (e.g. 0.2 M). Combined experimental and computational dielectric and X-ray spectroscopic analyses of the changes occurring in the Ca2+ solvation environment across these concentration regimes reveals a progressive transition from well-defined solvent-separated ion pairs to de-correlated free ions. This transition in ion correlation results in improvements in both conductivity and calcium cycling stability with increased salt concentration. Comparison with previous findings involving more strongly associating salts highlights the generality of this phenomenon, leading to important insight into controlling ion interactions in ether-based multivalent battery electrolytes.

7.
J Am Chem Soc ; 140(35): 11076-11084, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30059211

RESUMO

Future energy applications rely on our ability to tune liquid intermolecular interactions and achieve designer electrolytes with highly optimized properties. In this work, we demonstrate rational, combined experimental-computational design of a new carba- closo-dodecaborate-based salt with enhanced anodic stability for Mg energy storage applications. We first establish, through a careful examination using a range of solvents, the anodic oxidation of a parent anion, the carba- closo-dodecaborate anion at 4.6 V vs Mg0/2+ (2.0 vs Fc0/+), a value lower than that projected for this anion in organic solvent-based electrolytes and lower than weakly associating bis(trifluoromethylsulfonyl)imide and tetrafluoroborate anions. Solvents such as acetonitrile, 3-methylsulfolane, and 1,1,1,3,3,3-hexafluoroisopropanol are shown to enable the direct measurement of carba- closo-dodecaborate oxidation, where the resultant neutral radical drives passive film formation on the electrode. Second, we employ computational screening to evaluate the impact of functionalization of the parent anion on its stability and find that replacement of the carbon-vertex proton with a more electronegative fluorine or trifluoromethyl ligand increases the oxidative stability and decreases the contact-ion pair formation energy while maintaining reductive stability. This predicted expansion of the electrochemical window for fluorocarba- closo-dodecaborate is experimentally validated. Future work includes evaluation of the viability of these derivative anions as efficient and stable carriers for energy storage as a function of the ionic transport through the resulting surface films formed on candidate cathodes.

8.
Adv Sci (Weinh) ; : e2307838, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711210

RESUMO

Rechargeable multivalent-ion batteries are attractive alternatives to Li-ion batteries to mitigate their issues with metal resources and metal anodes. However, many challenges remain before they can be practically used due to the low solid-state mobility of multivalent ions. In this study, a promising material identified by high-throughput computational screening is investigated, ε-VOPO4, as a Mg cathode. The experimental and computational evaluation of ε-VOPO4 suggests that it may provide an energy density of >200 Wh kg-1 based on the average voltage of a complete cycle, significantly more than that of well-known Chevrel compounds. Furthermore, this study finds that Mg-ion diffusion can be enhanced by co-intercalation of Li or Na, pointing at interesting correlation dynamics of slow and fast ions.

9.
Acc Chem Res ; 45(3): 434-43, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22017522

RESUMO

Porous, high surface area materials have critical roles in applications including catalysis, photochemistry, and energy storage. In these fields, researchers have demonstrated that the nanometer-scale structure modifies mechanical, optical, and electrical properties of the material, greatly influencing its behavior and performance. Such complex chemical systems can involve several distinct processes occurring in series or parallel. Understanding the influence of size and structure on the properties of these materials requires techniques for producing clean, simple model systems. In the fields of photoelectrochemistry and lithium storage, for example, researchers need to evaluate the effects of changing the electrode structure of a single material or producing electrodes of many different candidate materials while maintaining a distinctly favorable morphology. In this Account, we introduce our studies of the formation and characterization of high surface area, porous thin films synthesized by a process called reactive ballistic deposition (RBD). RBD is a simple method that provides control of the morphology, porosity, and surface area of thin films by manipulating the angle at which a metal-vapor flux impinges on the substrate during deposition. This approach is largely independent of the identity of the deposited material and relies upon limited surface diffusion during synthesis, which enables the formation of kinetically trapped structures. Here, we review our results for the deposition of films from a number of semiconductive materials that are important for applications such as photoelectrochemical water oxidation and lithium ion storage. The use of RBD has enabled us to systematically control individual aspects of both the structure and composition of thin film electrodes in order to probe the effects of each on the performance of the material. We have evaluated the performance of several materials for potential use in these applications and have identified processes that limit their performance. Use of model systems, such as these, for fundamental studies or materials screening processes likely will prove useful in developing new high-performance electrodes.

10.
Nano Lett ; 12(1): 26-32, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22112010

RESUMO

We report hydrothermal synthesis of single crystalline TiO(2) nanowire arrays with unprecedented small feature sizes of ~5 nm and lengths up to 4.4 µm on fluorine-doped tin oxide substrates. A substantial amount of nitrogen (up to 1.08 atomic %) can be incorporated into the TiO(2) lattice via nitridation in NH(3) flow at a relatively low temperature (500 °C) because of the small cross-section of the nanowires. The low-energy threshold of the incident photon to current efficiency (IPCE) spectra of N-modified TiO(2) samples is at ~520 nm, corresponding to 2.4 eV. We also report a simple cobalt treatment for improving the photoelectrochemical (PEC) performance of our N-modified TiO(2) nanowire arrays. With the cobalt treatment, the IPCE of N-modified TiO(2) samples in the ultraviolet region is restored to equal or higher values than those of the unmodified TiO(2) samples, and it remains as high as ~18% at 450 nm. We propose that the cobalt treatment enhances PEC performance via two mechanisms: passivating surface states on the N-modified TiO(2) surface and acting as a water oxidation cocatalyst.


Assuntos
Cristalização/métodos , Nanoestruturas/química , Nitrogênio/química , Titânio/química , Água/química , Campos Eletromagnéticos , Luz , Teste de Materiais , Conformação Molecular/efeitos da radiação , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Nitrogênio/efeitos da radiação , Oxirredução/efeitos da radiação , Tamanho da Partícula , Doses de Radiação , Propriedades de Superfície/efeitos da radiação , Titânio/efeitos da radiação
11.
ACS Appl Mater Interfaces ; 15(5): 6933-6941, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36702613

RESUMO

Energy storage concepts based on multivalent ions, such as calcium, have great potential to become next-generation batteries due to their low cost and comparable cell voltage and energy density to Li-ion batteries. However, the development of Ca batteries is still hindered by the lack of suitable materials that grant a long cycle life. Specific to electrolyte materials, developing a calcium salt that is chemically stable under ambient conditions and enables reversible electrodeposition of Ca is critical. In this work, we use first-principles calculations to study the intrinsic and reductive stability of twelve Ca salts with fluorinated aluminate and borate anions and analyze the decomposition products formed on the metal anode surface that are critical to early-stage solid electrolyte interphase formation. We found anions with significant steric hindrance and a high degree of fluorination are intrinsically less stable and deemed unviable designs for Ca salt. Aluminate salts are generally less reactive with the Ca anode than their borate counterparts, and a high degree of fluorination leads to weaker reductive stability. Calcium fluoride is the most prominent decomposition product on the anode surface, and carbide-like motifs were also found from the decomposition of the designed salts.

12.
J Phys Chem Lett ; 14(50): 11393-11399, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38079154

RESUMO

Aqueous electrolytes composed of 0.1 M zinc bis(trifluoromethylsulfonyl)imide (Zn(TFSI)2) and acetonitrile (ACN) were studied using combined experimental and simulation techniques. The electrolyte was found to be electrochemically stable when the ACN V% is higher than 74.4. In addition, it was found that the ionic conductivity of the mixed solvent electrolytes changes as a function of ACN composition, and a maximum was observed at 91.7 V% of ACN although the salt concentration is the same. This behavior was qualitatively reproduced by molecular dynamics (MD) simulations. Detailed analyses based on experiments and MD simulations show that at high ACN composition the water network existing in the high water composition solutions breaks. As a result, the screening effect of the solvent weakens and the correlation among ions increases, which causes a decrease in ionic conductivity at high ACN V%. This study provides a fundamental understanding of this complex mixed solvent electrolyte system.

13.
J Am Chem Soc ; 134(8): 3659-62, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22316385

RESUMO

We report a synergistic effect involving hydrogenation and nitridation cotreatment of TiO(2) nanowire (NW) arrays that improves the water photo-oxidation performance under visible light illumination. The visible light (>420 nm) photocurrent of the cotreated TiO(2) is 0.16 mA/cm(2) and accounts for 41% of the total photocurrent under simulated AM 1.5 G illumination. Electron paramagnetic resonance (EPR) spectroscopy reveals that the concentration of Ti(3+) species in the bulk of the TiO(2) following hydrogenation and nitridation cotreatment is significantly higher than that of the sample treated solely with ammonia. It is believed that the interaction between the N-dopant and Ti(3+) is the key to the extension of the active spectrum and the superior visible light water photo-oxidation activity of the hydrogenation and nitridation cotreated TiO(2) NW arrays.

14.
Front Chem ; 10: 966332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034674

RESUMO

Reversible electrochemical magnesium plating/stripping processes are important for the development of high-energy-density Mg batteries based on Mg anodes. Ether glyme solutions such as monoglyme (G1), diglyme (G2), and triglyme (G3) with the MgTFSI2 salt are one of the conventional and commonly used electrolytes that can obtain the reversible behavior of Mg electrodes. However, the electrolyte cathodic efficiency is argued to be limited due to the enormous parasitic reductive decomposition and passivation, which is governed by impurities. In this work, a systematic identification of the impurities in these systems and their effect on the Mg deposition-dissolution processes is reported. The mitigation methods generally used for eliminating impurities are evaluated, and their beneficial effects on the improved reactivity are also discussed. By comparing the performances, we proposed a necessary conditioning protocol that can be easy to handle and much safer toward the practical application of MgTFSI2/glyme electrolytes containing impurities.

15.
JACS Au ; 2(4): 917-932, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35557755

RESUMO

Efforts to expand the technological capability of batteries have generated increased interest in divalent cationic systems. Electrolytes used for these electrochemical applications often incorporate cyclic ethers as electrolyte solvents; however, the detailed solvation environments within such systems are not well-understood. To foster insights into the solvation structures of such electrolytes, Ca(TFSI)2 and Zn(TFSI)2 dissolved in tetrahydrofuran (THF) and 2-methyl-tetrahydrofuran were investigated through multi-nuclear magnetic resonance spectroscopy (17O, 43Ca, and 67Zn NMR) combined with quantum chemistry modeling of NMR chemical shifts. NMR provides spectroscopic fingerprints that readily couple with quantum chemistry to identify a set of most probable solvation structures based on the best agreement between the theoretically predicted and experimentally measured values of chemical shifts. The multi-nuclear approach significantly enhances confidence that the correct solvation structures are identified due to the required simultaneous agreement between theory and experiment for multiple nuclear spins. Furthermore, quantum chemistry modeling provides a comparison of the solvation cluster formation energetics, allowing further refinement of the preferred solvation structures. It is shown that a range of solvation structures coexist in most of these electrolytes, with significant molecular motion and dynamic exchange among the structures. This level of solvation diversity correlates with the solubility of the electrolyte, with Zn(TFSI)2/THF exhibiting the lowest degree of each. Comparisons of analogous Ca2+ and Zn2+ solvation structures reveal a significant cation size effect that is manifested in significantly reduced cation-solvent bond lengths and thus stronger solvent bonding for Zn2+ relative to Ca2+. The strength of this bonding is further reduced by methylation of the cyclic ether ring. Solvation shells containing anions are energetically preferred in all the studied electrolytes, leading to significant quantities of contact ion pairs and consequently neutrally charged clusters. It is likely that the transport and interfacial de-solvation/re-solvation properties of these electrolytes are directed by these anion interactions. These insights into the detailed solvation structures, cation size, and solvent effects, including the molecular dynamics, are fundamentally important for the rational design of electrolytes in multivalent battery electrolyte systems.

16.
J Phys Chem B ; 125(14): 3644-3652, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33797900

RESUMO

Multivalent batteries represent an important beyond Li-ion energy storage concept. The prospect of calcium batteries, in particular, has emerged recently due to novel electrolyte demonstrations, especially that of a ground-breaking combination of the borohydride salt Ca(BH4)2 dissolved in tetrahydrofuran. Recent analysis of magnesium and calcium versions of this electrolyte led to the identification of divergent speciation pathways for Mg2+ and Ca2+ despite identical anions and solvents, owing to differences in cation size and attendant flexibility of coordination. To test these proposed speciation equilibria and develop a more quantitative understanding thereof, we have applied pulsed-field-gradient nuclear magnetic resonance and dielectric relaxation spectroscopy to study these electrolytes. Concentration-dependent variation in anion diffusivities and solution dipole relaxations, interpreted with the aid of molecular dynamics simulations, confirms these divergent Mg2+ and Ca2+ speciation pathways. These results provide a more quantitative description of the electroactive species populations. We find that these species are present in relatively small quantities, even in the highly active Ca(BH4)2/tetrahydrofuran electrolyte. This finding helps interpret previous characterizations of metal deposition efficiency and morphology control and thus provides important fundamental insight into the dynamic properties of multivalent electrolytes for next-generation batteries.

17.
J Phys Chem Lett ; 11(6): 2046-2052, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32079402

RESUMO

Detailed speciation of electrolytes as a function of chemical system and concentration provides the foundation for understanding bulk transport as well as possible decomposition mechanisms. In particular, multivalent electrolytes have shown a strong coupling between anodic stability and solvation structure. Furthermore, solvents that are found to exhibit reasonable stability against alkaline-earth metals generally exhibit low permittivity, which typically increases the complexity of the electrolyte species. To improve our understanding of ionic population and associated transport in these important classes of electrolytes, the speciation of Mg(TFSI)2 in monoglyme and diglyme systems is studied via a multiscale thermodynamic model using first-principles calculations for ion association and molecular dynamics simulations for dielectric properties. The results are then compared to Raman and dielectric relaxation spectroscopies, which independently confirm the modeling insights. We find that the significant presence of free ions in the low-permittivity glymes in the concentration range from 0.02 to 0.6 M is well-explained by the low-permittivity redissociation hypothesis. Here, salt speciation is largely dictated by long-range electrostatics, which includes permittivity increases due to polar contact ion pairs. The present results suggest that other low-permittivity multivalent electrolytes may also reach high conductivities as a result of redissociation.

18.
RSC Adv ; 10(46): 27315-27321, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35516916

RESUMO

The solvation shell structures of Ca2+ in aqueous and organic solutions probed by calcium L-edge soft X-ray absorption spectroscopy (XAS) and DFT/MD simulations show the coordination number of Ca2+ to be negatively correlated with the electrolyte concentration and the steric hindrance of the solvent molecule. In this work, the calcium L-edge soft XAS demonstrates its sensitivity to the surrounding chemical environment. Additionally, the total electron yield (TEY) mode is surface sensitive because the electron penetration depth is limited to a few nanometers. Thus this study shows its implications for future battery studies, especially for probing the electrolyte/electrode interface for electrochemical reactions under in situ/operando conditions.

19.
Front Chem ; 7: 175, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024883

RESUMO

Rational design of novel electrolytes with enhanced functionality requires fundamental molecular-level understanding of structure-property relationships. Here we examine the suitability of a range of organic solvents for non-aqueous electrolytes in secondary magnesium batteries using density functional theory (DFT) calculations as well as experimental probes such as cyclic voltammetry and Raman spectroscopy. The solvents considered include ethereal solvents (e.g., glymes) sulfones (e.g., tetramethylene sulfone), and acetonitrile. Computed reduction potentials show that all solvents considered are stable against reduction by Mg metal. Additional computations were carried out to assess the stability of solvents in contact with partially reduced Mg cations (Mg2+ → Mg+) formed during cycling (e.g., deposition) by identifying reaction profiles of decomposition pathways. Most solvents, including some proposed for secondary Mg energy storage applications, exhibit decomposition pathways that are surprisingly exergonic. Interestingly, the stability of these solvents is largely dictated by magnitude of the kinetic barrier to decomposition. This insight should be valuable toward rational design of improved Mg electrolytes.

20.
ACS Nano ; 11(11): 11194-11205, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29112807

RESUMO

To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa