RESUMO
Vertebrates confronted with challenging environments often experience an increase in circulating glucocorticoids, which result in morphological, physiological and behavioral changes that promote survival. However, chronically elevated glucocorticoids can suppress immunity, which may increase susceptibility to disease. Since the introduction of avian malaria to Hawaii a century ago, low-elevation populations of Hawaii Amakihi (Chlorodrepanis virens) have undergone strong selection by avian malaria and evolved increased resilience (the ability to recover from infection), while populations at high elevation with few vectors have not undergone selection and remain susceptible. We investigated how experimentally elevated corticosterone affects the ability of high- and low-elevation male Amakihi to cope with avian malaria by measuring innate immunity, hematocrit and malaria parasitemia. Corticosterone implants resulted in a decrease in hematocrit in high- and low-elevation birds but no changes to circulating natural antibodies or leukocytes. Overall, leukocyte count was higher in low- than in high-elevation birds. Malaria infections were detected in a subset of low-elevation birds. Infected individuals with corticosterone implants experienced a significant increase in circulating malaria parasites while untreated infected birds did not. Our results suggest that Amakihi innate immunity measured by natural antibodies and leukocytes is not sensitive to changes in corticosterone, and that high circulating corticosterone may reduce the ability of Amakihi to cope with infection via its effects on hematocrit and malaria parasite load. Understanding how glucocorticoids influence a host's ability to cope with introduced diseases provides new insight into the conservation of animals threatened by novel pathogens.
Assuntos
Malária Aviária , Passeriformes , Plasmodium , Animais , Corticosterona , Havaí , Humanos , Imunidade Inata , MasculinoRESUMO
Glucocorticoids, androgens, and prolactin regulate metabolism and reproduction, but they also play critical roles in immunomodulation. Since the introduction of avian malaria to Hawaii a century ago, low elevation populations of the Hawaii Amakihi (Chlorodrepanis virens) that have experienced strong selection by avian malaria have evolved increased resilience (the ability to recover from infection), while high elevation populations that have undergone weak selection remain less resilient. We investigated how variation in malaria selection has affected corticosterone, testosterone, and prolactin hormone levels in Amakihi during the breeding season. We predicted that baseline corticosterone and testosterone (which have immunosuppressive functions) would be reduced in low elevation and malaria-infected birds, while stress-induced corticosterone and prolactin (which have immunostimulatory functions) would be greater in low elevation and malaria-infected birds. As predicted, prolactin was significantly higher in malaria-infected than uninfected females (although more robust sample sizes would help to confirm this relationship), while testosterone trended higher in malaria-infected than uninfected males and, surprisingly, neither baseline nor stress-induced CORT varied with malaria infection. Contrary to our predictions, stress-induced corticosterone was significantly lower in low than high elevation birds while testosterone in males and prolactin in females did not vary by elevation, suggesting that Amakihi hormone modulation across elevation is determined by variables other than disease selection (e.g., timing of breeding, energetic challenges). Our results shed new light on relationships between introduced disease and hormone modulation, and they raise new questions that could be explored in experimental settings.
Assuntos
Malária Aviária , Aves Canoras , Animais , Corticosterona , Feminino , Havaí , Masculino , Prolactina , TestosteronaRESUMO
Historically, investigations of how organismal investments in immunity fluctuate in response to environmental and physiological changes have focused on seasonally breeding organisms that confine reproduction to seasons with relatively unchallenging environmental conditions and abundant resources. The red crossbill, Loxia curvirostra, is a songbird that can breed opportunistically if conifer seeds are abundant, on both short, cold, and long, warm days, providing an ideal system to investigate environmental and reproductive effects on immunity. In this study, we measured inter- and intra-annual variation in complement, natural antibodies, PIT54 and leucocytes in crossbills across four summers (2010-2013) and multiple seasons within 1 year (summer 2011-spring 2012). Overall, we observed substantial changes in crossbill immune investment among summers, with interannual variation driven largely by food resources, while variation across multiple seasons within a single cone year was less pronounced and lacked a dominant predictor of immune investment. However, we found weak evidence that physiological processes (e.g. reproductive condition, moult) or abiotic factors (e.g. temperature, precipitation) affect immune investment. Collectively, this study suggests that a reproductively flexible organism may be able to invest in both reproduction and survival-related processes, potentially by exploiting rich patches with abundant resources. More broadly, these results emphasize the need for more longitudinal studies of trade-offs associated with immune investment.
Assuntos
Passeriformes , Reprodução/fisiologia , Animais , Estações do Ano , Aves CanorasRESUMO
In many passerine birds, testosterone stimulates song and aggression but inhibits paternal care, but few studies have explored whether such effects can be reversed with testosterone blockers. We explored the effect of testosterone blockers on song, aggression and paternal care of Lapland longspurs (Calcarius lapponicus), an arctic passerine with a short breeding season. Twenty-one "blocker males" received implants containing an androgen receptor blocker and an aromatase inhibitor, compared to 27 control males with empty or no implants. Song, aggression and other behaviors were evaluated with simulated territorial intrusions (STI) during mate-guarding, and with focal observations (without STI) during mate-guarding and incubation. Nests were monitored and nestlings weighed as an indirect measure of paternal care. During STI, blocker males exhibited similar song rates, significantly lower aggression, and were significantly less likely to be found on territory than control males. Focal observations revealed no differences in spontaneous song, aggression, foraging, preening, or flight activity. Blocker males' nestlings had greater body mass on day 5 after hatching, but this difference disappeared by fledging, and both groups fledged similar numbers of young. Two blocker males exhibited unusual paternal care: incubation and brooding of young, or feeding of nestlings at another male's nest. In sum, testosterone blockers affected aggression but not song, contrasting with results from previously published testosterone implant studies. Effects on paternal care were concordant with testosterone implant studies. These patterns may be related to rapid behavioral changes characteristic of the short breeding season of the Arctic.
Assuntos
Agressão/efeitos dos fármacos , Antagonistas de Receptores de Andrógenos/farmacologia , Comportamento de Nidação/efeitos dos fármacos , Passeriformes/fisiologia , Comportamento Paterno/efeitos dos fármacos , Testosterona/antagonistas & inibidores , Vocalização Animal/efeitos dos fármacos , Animais , Regiões Árticas , Masculino , Receptores Androgênicos/metabolismo , Reprodução/efeitos dos fármacos , Estações do Ano , Territorialidade , Testosterona/farmacologiaRESUMO
Social information is used by many vertebrate taxa to inform decision-making, including resource-mediated movements, yet the mechanisms whereby social information is integrated physiologically to affect such decisions remain unknown. Social information is known to influence the physiological response to food reduction in captive songbirds. Red crossbills (Loxia curvirostra) that were food reduced for several days showed significant elevations in circulating corticosterone (a "stress" hormone often responsive to food limitation) only if their neighbors were similarly food restricted. Physiological responses to glucocorticoid hormones are enacted through two receptors that may be expressed differentially in target tissues. Therefore, we investigated the influence of social information on the expression of the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) mRNA in captive red crossbill brains. Although the role of MR and GR in the response to social information may be highly complex, we specifically predicted social information from food-restricted individuals would reduce MR and GR expression in two brain regions known to regulate hypothalamic-pituitary-adrenal (HPA) activity - given that reduced receptor expression may lessen the efficacy of negative feedback and release inhibitory tone on the HPA. Our results support these predictions - offering one potential mechanism whereby social cues could increase or sustain HPA-activity during stress. The data further suggest different mechanisms by which metabolic stress versus social information influence HPA activity and behavioral outcomes.
Assuntos
Encéfalo/metabolismo , Comunicação , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animais , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Hipotálamo/metabolismo , Masculino , Passeriformes/metabolismo , Hipófise/metabolismoRESUMO
Animals use multiple signals to attract mates, including elaborate song, brightly coloured ornaments and physical displays. Female birds often prefer both elaborate male song and intense carotenoid-based plumage coloration. This could lead less visually ornamented males to increase song production to maximize their attractiveness to females. We tested this possibility in the highly social and non-territorial house finch (Haemorhous mexicanus), in which females discriminate among males based on both song and on the intensity of red carotenoid-based plumage coloration. We manipulated male plumage coloration through carotenoid supplementation during moult, so that males were either red or yellow. Males were then housed under three social environments: (i) all red birds, (ii) all yellow birds or (iii) a mixture of red/yellow birds. We recorded song after presentation of a female. Red males produced more song than yellow males. But when yellow males were housed with red conspecifics, they produced more song relative to yellow males housed with equally unattractive yellow males. This study provides novel evidence that a male's plumage coloration and the plumage colour of his social competitors influence investment in song.
Assuntos
Plumas/fisiologia , Passeriformes/fisiologia , Pigmentação/fisiologia , Vocalização Animal/fisiologia , Animais , Carotenoides , Comportamento Competitivo/fisiologia , Feminino , Masculino , Passeriformes/anatomia & histologia , Comportamento Sexual Animal/fisiologiaRESUMO
While parasite infection can have substantial fitness consequences in organisms, the predictors of parasite prevalence and intensity are often complex and vary depending on the host species. Here, we examined correlates of Haemoproteus (a common malaria parasite) prevalence and intensity in an opportunistically breeding songbird, the red crossbill (Loxia curvirostra). Specifically, we quantified Haemoproteus prevalence and intensity in crossbills caught in the Grand Teton National Park from 2010 to 2013. We found that parasite prevalence varies seasonally and across years, with the highest number of infected individuals occurring in the summer, although there was variation across summers sampled, and that prevalence was positively related to annual mean cone crop sizes (a measure of crossbill food abundance) and daily ambient temperature (a correlate of vector abundance). Parasite intensity was significantly and positively related to one measure of innate immunity, leucocyte counts per blood volume. Finally, neither crossbill age, ecomorph, nor sex had significant effects on parasite infection intensity; however, parasite prevalence did significantly vary among ecomorph and age classes. These results support the interpretation that a combination of physiological (specifically immune activity) and environmental factors affects parasite prevalence and infection intensity in this opportunistically breeding avian species.
Assuntos
Doenças das Aves/parasitologia , Haemosporida , Imunidade Inata , Infecções Protozoárias em Animais/epidemiologia , Estações do Ano , Aves Canoras/parasitologia , Fatores Etários , Animais , Doenças das Aves/sangue , Doenças das Aves/epidemiologia , Cruzamento , Feminino , Especificidade de Hospedeiro , Masculino , Prevalência , Infecções Protozoárias em Animais/sangue , Aves Canoras/imunologia , Wyoming/epidemiologiaRESUMO
An organism's investment in immune function often varies seasonally but understanding of how fluctuations in environmental conditions directly modulate investment remains limited. This experiment investigated how changes in photoperiod and food availability affect investment in constitutive innate immunity and the acute phase response induced by lipopolysaccharide (LPS) injections in captive red crossbills (Loxia curvirostra). Crossbills are reproductively flexible songbirds that specialize on an unpredictably available food resource and display temporal variation in immunity in the wild. Birds were separated into four treatments and exposed to long or short day lengths for 6 weeks before continuing on an ad libitum diet or experiencing a 20% food reduction for 10â days. Birds were un-injected or injected with LPS both before and after diet change. Innate immunity was quantified throughout the experiment to assess effects of photoperiod, food availability and their interactions on hemolysis-hemagglutination, haptoglobin, bacterial killing ability and leukocyte counts. Overall, increasing day length significantly increased both bacterial killing ability and leukocyte counts. Surprisingly, food restriction had little effect on the immune parameters, potentially owing to the 'low-cost' environment of captivity and suggesting that investment in innate immunity is prioritized and maintained whenever possible. LPS injections induced stereotypical sickness behaviors and increased bacterial killing ability in short day birds and complement activity (hemolysis) both before and after food restriction. These results demonstrate robust seasonal modulation of immune investment and an ability to maintain innate immunity in the face of limited resources in these temporally flexible songbirds.
Assuntos
Privação de Alimentos , Fotoperíodo , Aves Canoras/imunologia , Aves Canoras/fisiologia , Animais , Bactérias/imunologia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/veterinária , Doenças das Aves/imunologia , Doenças das Aves/microbiologia , Feminino , Imunidade Inata , Lipopolissacarídeos/imunologia , MasculinoRESUMO
To time reproduction optimally, birds have evolved diverse mechanisms by which they respond to environmental changes that help them anticipate and prepare for the breeding season. While residents initiate reproductive preparation and breed in the same geographic location, migrant birds simultaneously prepare for breeding and migration far from their breeding grounds. As a result, it is hypothesized that migrant and resident birds use environmental cues differently to prepare to breed and that there is adaptive specialization in mechanisms regulating reproductive preparation. Specifically, residents are expected to rely more on non-photic cues (e.g. food, temperature, social cues) than migrants. We tested this general prediction using a social cue manipulation. First, we compared the effects of subspecies-appropriate recorded male song on reproductive development in migrants and residents on a naturally increasing photoperiod. Second, we tested the sensitivity of migrant-specific life history events (fattening and pre-alternate molt) to song treatment. After 82â days, residents had higher luteinizing hormone and greater ovarian development than migrants, but song treatment had no effect on these metrics in either subspecies. Song advanced pre-alternate molt but had no effect on fattening in migrants. While our study does not support specialization in social cue use in migrants and residents, it is consistent with findings in the literature of specialization in photoperiodic response. It also demonstrates for the first time that social cues can influence molt in a migrant species. Additional findings from a pilot study looking at responses to a live male suggest it is important to test other kinds of social cues.
Assuntos
Comunicação Animal , Sinais (Psicologia) , Características de História de Vida , Reprodução , Aves Canoras/fisiologia , Tecido Adiposo/metabolismo , Migração Animal , Animais , California , Feminino , Hormônio Luteinizante/metabolismo , Muda , Ovário/crescimento & desenvolvimentoRESUMO
Medullary bone, a non-structural osseous tissue, serves as a temporary storage site for calcium that is needed for eggshell production in a number of avian species. Previous research focusing primarily on domesticated species belonging to the Anseriformes, Galliformes, and Columbiformes has indicated that rising estrogen levels are a key signal stimulating medullary bone formation; Passeriformes (which constitute over half of extant bird species and are generally small) have received little attention. In the current study, we examined the influence of estrogen on medullary bone and cortical bone in two species of Passeriformes: the Pine Siskin (Spinus pinus) and the House Finch (Haemorhous mexicanus). Females of these species received either an estradiol implant or were untreated as a control. After 4.5-5months, reproductive condition was assessed and leg (femora) and wing (humeri) bones were collected for analysis using high-resolution (10µm) micro-computed tomography scanning. We found that in both species estradiol-treated females had significantly greater medullary bone quantity in comparison to untreated females, but we found no differences in cortical bone quantity or microarchitecture. We were also able to examine medullary bone density in the pine siskins and found that estradiol treatment significantly increased medullary bone density. Furthermore, beyond the effect of the estradiol treatment, we observed a relationship between medullary bone quantity and ovarian condition that suggests that the timing of medullary bone formation may be related to the onset of yolk deposition in these species. Further research is needed to better understand the precise timing and endocrine regulation of medullary bone formation in Passerines and to determine the extent to which female Passerines rely on medullary bone calcium during the formation of calcified eggshells.
Assuntos
Densidade Óssea/efeitos dos fármacos , Estrogênios/farmacologia , Tentilhões/fisiologia , Microtomografia por Raio-X/métodos , Animais , Corticosterona/sangue , Feminino , Tentilhões/classificaçãoRESUMO
The role of photoperiod in avian reproductive timing has been well studied, and we are increasingly recognizing the roles of other environmental cues such as social cues. However, few studies have evaluated the extent to which males and females of the same species respond similarly to the same type of cue. Moreover, previous studies have rarely examined how variation in the quality or nature of a given social cue might modulate its effect. Here, we examine the sensitivity of male and female pine siskins (Spinus pinus) to a potential mate as a stimulatory cue for gonadal recrudescence, and we investigate whether variation in the relationship between a bird and its potential mate modulates the effect of that potential mate. Birds were initially housed without opposite sex birds on a 12L:12D photoperiod with ad libitum food. After gonadal recrudescence had begun males and females were randomly paired with an opposite sex bird or housed alone. An additional group of males was paired with estradiol-implanted females. In males, these social treatments had no effect on testis length, cloacal protuberance length, luteinizing hormone (LH) levels, or testosterone levels. In females, presence of a potential mate had a significant and positive effect on ovary score, defeathering of the brood patch, and LH levels. Among paired birds, the degree of affiliation within a pair corresponded to the extent of reproductive development in females, but not males. Thus, reproductive timing in females appears to be sensitive to both the presence of a potential mate and her relationship with him.
Assuntos
Cloaca/crescimento & desenvolvimento , Hormônio Luteinizante/sangue , Ovário/crescimento & desenvolvimento , Ligação do Par , Comportamento Sexual Animal/fisiologia , Aves Canoras/fisiologia , Testículo/crescimento & desenvolvimento , Testosterona/sangue , Animais , Feminino , Masculino , Fotoperíodo , Meio SocialRESUMO
Songbirds provide rich natural models for studying the relationships between brain anatomy, behavior, environmental signals, and gene expression. Under the Songbird Neurogenomics Initiative, investigators from 11 laboratories collected brain samples from six species of songbird under a range of experimental conditions, and 488 of these samples were analyzed systematically for gene expression by microarray. ANOVA was used to test 32 planned contrasts in the data, revealing the relative impact of different factors. The brain region from which tissue was taken had the greatest influence on gene expression profile, affecting the majority of signals measured by 18,848 cDNA spots on the microarray. Social and environmental manipulations had a highly variable impact, interpreted here as a manifestation of paradoxical "constitutive plasticity" (fewer inducible genes) during periods of enhanced behavioral responsiveness. Several specific genes were identified that may be important in the evolution of linkages between environmental signals and behavior. The data were also analyzed using weighted gene coexpression network analysis, followed by gene ontology analysis. This revealed modules of coexpressed genes that are also enriched for specific functional annotations, such as "ribosome" (expressed more highly in juvenile brain) and "dopamine metabolic process" (expressed more highly in striatal song control nucleus area X). These results underscore the complexity of influences on neural gene expression and provide a resource for studying how these influences are integrated during natural experience.
Assuntos
Encéfalo/fisiologia , Aves Canoras/genética , Aves Canoras/fisiologia , Animais , Comportamento Animal/fisiologia , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Feminino , Alimentos , Interação Gene-Ambiente , Masculino , Transdução de Sinais/genética , Comportamento Social , Aves Canoras/anatomia & histologia , Aves Canoras/crescimento & desenvolvimento , Especificidade da Espécie , Transcriptoma , Vocalização Animal/fisiologiaRESUMO
Gonadal steroids are important mediators of traits relevant to fitness, and thus may be targets of selection. However, more knowledge is needed about sources of variation along the endocrine axes that may contribute to functional variation in steroid levels. In a controlled captive environment, we studied males of two closely related subspecies of the dark-eyed junco (Junco hyemalis) that differ in testosterone-related phenotype, asking whether they also differ in testosterone (T), and assessing the contribution of the sequential links of the hypothalamic-pituitary-gonadal axis. When males of both subspecies were challenged with gonadotropin-releasing hormone (GnRH), they were similar in circulating luteinizing hormone (LH) and T responses. When challenged with exogenous LH, they again produced levels of T similar to one another, and to the levels produced in response to GnRH. However, the smaller, less ornamented, and less aggressive subspecies had greater abundance of mRNA for LH receptor in the testes and for androgen receptor in the rostral hypothalamus, suggesting potential differences in regulatory feedback. We suggest that circulating hormone levels may be less prone to evolutionary change than the responsiveness of individual hormone targets. Among individuals, T titers were highly repeatable whether males were challenged with GnRH or with LH, but LH produced in response to GnRH did not covary with T produced in response to LH. Testis mass, but not LH receptor transcript abundance, predicted individual variation in T responses. These data implicate the gonad, but not the pituitary, as an important source of individual variation in T production.
Assuntos
Tentilhões/fisiologia , Sistema Hipotálamo-Hipofisário/fisiologia , Hipotálamo/metabolismo , Testículo/metabolismo , Animais , Hormônio Liberador de Gonadotropina/farmacologia , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Individualidade , Hormônio Luteinizante/sangue , Hormônio Luteinizante/farmacologia , Masculino , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Testículo/efeitos dos fármacos , Testosterona/sangueRESUMO
Determining space use for species is fundamental to understanding their ecology, and tracking animals can reveal insights into their spatial ecology on home ranges and territories. Recent technological advances have led to GPS-tracking devices light enough for birds as small as ~30 g, creating novel opportunities to remotely monitor fine-scale movements and space use for these smaller species. We tested whether miniaturized GPS tags can allow us to understand space use of migratory birds away from their capture sites and sought to understand both pre-breeding space use as well as territory and habitat use on the breeding grounds. We used GPS tags to characterize home ranges on the breeding grounds for a migratory songbird with limited available breeding information, the Golden-crowned Sparrow (Zonotrichia atricapilla). Using GPS points from 23 individuals across 26 tags (three birds tagged twice), we found home ranges in Alaska and British Columbia were on average 44.1 ha (95% kernel density estimate). In addition, estimates of territory sizes based on field observations (mean 2.1 ha, 95% minimum convex polygon [MCP]) were three times smaller than 95% MCPs created using GPS tags (mean 6.5 ha). Home ranges included a variety of land cover classes, with shrubland particularly dominant (64-100% of home range cover for all but one bird). Three birds tracked twice returned to the same breeding area each year, supporting high breeding site fidelity for this species. We found reverse spring migration for five birds that flew up to 154 km past breeding destinations before returning. GPS-tracking technology allowed for critical ecological insights into this migratory species that breeds in very remote locations.
Assuntos
Migração Animal , Sistemas de Informação Geográfica , Comportamento de Retorno ao Território Vital , Estações do Ano , Pardais , Animais , Migração Animal/fisiologia , Pardais/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Cruzamento , Ecossistema , Colúmbia Britânica , Alaska , Comportamento de Nidação/fisiologiaRESUMO
Infection with parasites and pathogens is costly for hosts, causing loss of nutritional resources, reproductive potential, tissue integrity and even life. In response, animals have evolved behavioural and immunological strategies to avoid infection by pathogens and infestation by parasites. Scientists generally study these strategies in isolation from each other; however, since these defences entail costs, host individuals should benefit from balancing investment in these strategies, and understanding of infectious disease dynamics would benefit from studying the relationship between them. Here, we show that Carpodacus mexicanus (house finches) avoid sick individuals. Moreover, we show that individuals investing less in behavioural defences invest more in immune defences. Such variation has important implications for the dynamics of pathogen spread through populations, and ultimately the course of epidemics. A deeper understanding of individual- and population-level disease defence strategies will improve our ability to understand, model and predict the outcomes of pathogen spread in wildlife.
Assuntos
Doenças das Aves/imunologia , Tentilhões/fisiologia , Imunidade Inata , Comportamento Social , Proteínas de Fase Aguda/análise , Animais , Anticorpos Antibacterianos/sangue , Doenças das Aves/sangue , Doenças das Aves/microbiologia , Doenças das Aves/fisiopatologia , Distribuição de Qui-Quadrado , Tentilhões/imunologia , Tentilhões/microbiologia , Adjuvante de Freund/farmacologia , Injeções Intradérmicas/veterinária , Masculino , Estatísticas não Paramétricas , Fatores de Tempo , Gravação em VídeoRESUMO
In most vertebrates, production of reproductive hormones wanes with age, co-occurring with a decline in reproductive output. Measurement of these hormones can serve as a key marker of the onset of reproductive senescence. Longitudinal studies of physiological parameters in populations of free-living animals are relatively uncommon; however, we have monitored baseline concentrations of hormones for nine years in a population of Florida scrub-jays (Aphelocoma coerulescens). We hypothesized that concentrations of circulating reproductive hormones change with age, and predicted declines in reproductive hormones in the oldest jays. We found that baseline levels of luteinizing hormone (LH) and testosterone (T) were relatively low in both young and old male breeders and reach their highest levels in birds aged 4-7years. Conversely, we found no age-related patterns in baseline levels of LH or estradiol in female jays. In males we determined which component of the hypothalamo-pituitary-gonadal (HPG) axis is responsible for observed age-based differences, by challenging males of different ages with gonadotropin-releasing hormone (GnRH); thereby allowing assessment of pituitary and gonadal responsiveness by measuring plasma concentrations of luteinizing hormone and testosterone, respectively. The magnitude of increase in levels of both LH and T in response to GnRH challenge decreased with age in male breeders. Combined with the baseline levels, the results from the GnRH challenge suggest that younger birds have the capability to produce higher levels of reproductive hormone, whereas the old birds may be constrained by senescence in their ability to produce these hormones.
Assuntos
Envelhecimento/metabolismo , Envelhecimento/fisiologia , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Passeriformes/metabolismo , Passeriformes/fisiologia , Reprodução/fisiologia , Animais , Feminino , Florida , MasculinoRESUMO
Understanding sources of individual differences in steroid hormone production has important implications for the evolution of reproductive and social behaviors. In females in particular, little is known about the mechanistic sources of these individual differences, despite established linkages between sex steroids and a variety of fitness-related traits. Using captive female dark-eyed juncos (Junco hyemalis) from two subspecies, we asked how variation in different components of the hypothalamo-pituitary-gonadal (HPG) axis related to variation in testosterone production among females, and we compared females to males in multiple components of the HPG axis. We demonstrated consistent individual differences in testosterone elevation in response to challenges with luteinizing hormone (LH) and gonadotropin-releasing hormone (GnRH). These hormone challenges led to more LH production but less testosterone production in females than males, and the sexes differed in some but not all measures of sensitivity to hormones along the HPG axis. Similar to findings in males, variation in testosterone production among females was not related to variation in LH production, gonadal LH-receptor mRNA abundance, or hypothalamic abundance of androgen receptor mRNA or aromatase mRNA. Rather, the primary source of individual variation in circulating steroids appears to the gonad, a conclusion further supported by positive correlations between testosterone and estradiol production. Unlike males, females did not differ by subspecies in any of the endocrine parameters that we assessed, suggesting some degree of independent evolution between the two sexes. Our results highlight the sources of physiological variation that may underlie the evolution of hormone-mediated phenotypes in females.
Assuntos
Estrogênios/metabolismo , Gônadas/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Testosterona/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Gônadas/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Hormônio Luteinizante/farmacologia , Masculino , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Aves CanorasRESUMO
Seasonal changes in stress steroid hormone secretions are thought to reflect investment in self-maintenance versus reproduction. The capricious conditions hypothesis (CCH) posits that reduced corticosterone (CORT) secretion during stress coincident with parental phases of breeding is necessary in harsh environments because a full response would otherwise trigger repeated nest abandonments. To test this hypothesis, we measured seasonal changes in stress physiology in free-living red crossbills (Loxia curvirostra), an opportunistically breeding songbird that regularly breeds in summer and winter. This species allows unique comparisons of breeding physiology under very different seasonal environmental conditions within locations. We found strong support for the CCH: red crossbills showed reduced CORT secretion only when in high reproductive condition in the winter, when compared with summer breeders and winter non-breeders. These data demonstrate that behavioural status and local environmental conditions interact to affect mechanisms underlying investment trade-offs, presumably in a way that maximizes lifetime reproductive success.
Assuntos
Corticosterona/sangue , Meio Ambiente , Reprodução , Aves Canoras/fisiologia , Transcortina/análise , Animais , Feminino , Técnicas Imunoenzimáticas , Masculino , Estações do Ano , Aves Canoras/sangue , Estresse Fisiológico , Washington , WyomingRESUMO
In order to time reproduction to coincide with favorable conditions, animals use environmental cues to up- and down-regulate the reproductive axis appropriately. Although photoperiodic cues are one of the best studied of such environmental cues, animals also attend to others such as temperature, food availability, rainfall and social cues. Such non-photic cues are expected to be particularly important for tropical species and temperate-zone species that exhibit flexible or opportunistic breeding schedules. In this study, we investigate the use of non-photic cues, specifically food availability and social cues, to time the initiation of reproductive development in the pine siskin (Spinus pinus), a temperate-zone songbird with a flexible breeding schedule. Following winter solstice, males were housed on a 12L:12D photoperiod with either access to a preferred food, a potential mate (social cue), or both. Control birds received only maintenance diet and no mate. Access to a preferred food had a significant positive effect on testis size and circulating luteinizing hormone (LH). However, we found no effect of social treatment on reproductive development. The effect of the food treatment on reproductive development did not appear to result from effects on body mass or fat, as neither measure differed across treatments. The food treatment influenced not only reproductive physiology, but also reproductive behavior in this species, as access to seeds had a positive effect on affiliation of pairs. This study demonstrates that food is a potent stimulus for the initiation of reproductive development in pine siskins.
Assuntos
Cruzamento , Passeriformes/fisiologia , Fotoperíodo , Reprodução/fisiologia , Animais , Feminino , Hormônio Luteinizante/sangue , Masculino , Passeriformes/sangue , Comportamento Sexual Animal/fisiologia , Testículo/fisiopatologia , Testosterona/sangueRESUMO
Many organisms use environmental cues to time events in their annual cycle, such as reproduction and migration, with the appropriate timing of such events impacting survival and reproduction. As the climate changes, evolved mechanisms of cue use may facilitate or limit the capacity of organisms to adjust phenology accordingly, and organisms often integrate multiple cues to fine-tune the timing of annual events. Yet, our understanding of how suites of cues are integrated to generate observed patterns of seasonal timing remains nascent. We present an overarching framework to describe variation in the process of cue integration in the context of seasonal timing. This framework incorporates both cue dependency and cue interaction. We then summarize how existing empirical findings across a range of vertebrate species and life cycle events fit into this framework. Finally, we use a theoretical model to explore how variation in modes of cue integration may impact the ability of organisms to adjust phenology adaptively in the face of climate change. Such a theoretical approach can facilitate the exploration of complex scenarios that present challenges to study in vivo but capture important complexity of the natural world.