Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Clin Microbiol ; 61(2): e0149822, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36688643

RESUMO

Testing of cellular therapy products for Mycoplasma is a regulatory requirement by the United States Food and Drug Administration (FDA) to ensure the sterility and safety of the product prior to release for patient infusion. The risk of Mycoplasma contamination in cell culture is high. Gold standard testing follows USP 63 which requires a 28-day agar and broth cultivation method that is impractical for short shelf-life biologics. Several commercial molecular platforms have been marketed for faster raw material and product release testing; however, little performance data are available in the literature. In this study, we performed a proof-of-principle analysis to evaluate the performance of five commercial molecular assays, including the MycoSEQ Mycoplasma detection kit (Life Technologies), the MycoTOOL Mycoplasma real-time detection kit (Roche), the VenorGEM qOneStep kit (Minerva Biolabs), the ATCC universal Mycoplasma detection kit, and the Biofire Mycoplasma assay (bioMérieux Industry) using 10 cultured Mollicutes spp., with each at four log-fold dilutions (1,000 CFU/mL to 1 CFU/mL) in biological duplicates with three replicates per condition (n = 6) to assess limit of detection (LOD) and repeatability. Additional testing was performed in the presence of tumor infiltrating lymphocytes (TILs). Based on LOD alone, the Biofire Mycoplasma assay was most sensitive followed by the MycoSEQ and MycoTOOL which were comparable. We showed that not all assays were capable of meeting the ≤10 CFU/mL LOD to replace culture-based methods according to European and Japanese pharmacopeia standards. No assay interference was observed when testing in the presence of TILs.


Assuntos
Mycoplasma , Humanos , Limite de Detecção , Técnicas de Cultura de Células , Padrões de Referência , Terapia Baseada em Transplante de Células e Tecidos
2.
J Cell Biol ; 218(10): 3237-3257, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31527147

RESUMO

Outer kinetochore assembly enables chromosome attachment to microtubules and spindle assembly checkpoint (SAC) signaling in mitosis. Aurora B kinase controls kinetochore assembly by phosphorylating the Mis12 complex (Mis12C) subunit Dsn1. Current models propose Dsn1 phosphorylation relieves autoinhibition, allowing Mis12C binding to inner kinetochore component CENP-C. Using Xenopus laevis egg extracts and biochemical reconstitution, we found that autoinhibition of the Mis12C by Dsn1 impedes its phosphorylation by Aurora B. Our data indicate that the INCENP central region increases Dsn1 phosphorylation by enriching Aurora B at inner kinetochores, close to CENP-C. Furthermore, centromere-bound CENP-C does not exchange in mitosis, and CENP-C binding to the Mis12C dramatically increases Dsn1 phosphorylation by Aurora B. We propose that the coincidence of Aurora B and CENP-C at inner kinetochores ensures the fidelity of kinetochore assembly. We also found that the central region is required for the SAC beyond its role in kinetochore assembly, suggesting that kinetochore enrichment of Aurora B promotes the phosphorylation of other kinetochore substrates.


Assuntos
Aurora Quinase B/metabolismo , Cinetocoros/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Xenopus
3.
Dev Cell ; 42(6): 640-654.e5, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28950102

RESUMO

The chromosomal passenger complex (CPC) localizes to centromeres in early mitosis to activate its subunit Aurora B kinase. However, it is unclear whether centromeric CPC localization contributes to CPC functions beyond Aurora B activation. Here, we show that an activated CPC that cannot localize to centromeres supports functional assembly of the outer kinetochore but is unable to correct errors in kinetochore-microtubule attachment in Xenopus egg extracts. We find that CPC has two distinct roles at centromeres: one to selectively phosphorylate Ndc80 to regulate attachment and a second, conserved kinase-independent role in the proper composition of inner kinetochore proteins. Although a fully assembled inner kinetochore is not required for outer kinetochore assembly, we find it is essential to recruit tension indicators, such as BubR1 and 3F3/2, to erroneous attachments. We conclude centromeric CPC is necessary for tension-dependent removal of erroneous attachments and for the kinetochore composition required to detect tension loss.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Animais , Aurora Quinase B/metabolismo , Centrômero/metabolismo , Proteínas do Citoesqueleto , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa