RESUMO
BACKGROUND: Fluoride exposure may increase the risk of hypothyroidism, but results from previous studies are inconsistent at low-level fluoride exposure (i.e., ≤0.7 mg/L). Human studies of fluoride and thyroid hormone levels in pregnancy are scarce. OBJECTIVES: We examined associations between fluoride exposure and maternal thyroid hormone levels in a Canadian pregnancy cohort, with consideration for fetal sex-specific effects. METHODS: We measured fluoride concentrations in drinking water and spot urine samples collected during each trimester from 1876 pregnant women enrolled in the Maternal-Infant Research on Environmental Chemicals (MIREC) study. We also measured maternal thyroid stimulating hormone (TSH), free thyroxine (FT4), and total thyroxine (TT4) levels during the first trimester of pregnancy. We used linear and non-linear regression models to estimate associations between fluoride exposure and levels of TSH, FT4, and TT4. We explored effect modification by fetal sex and considered maternal iodine status as a potential confounder. RESULTS: A 1 mg/L increase in urinary fluoride was associated with a 0.30 (95 %CI: 0.08, 0.51) logarithmic unit (i.e., 35.0 %) increase in TSH among women pregnant with females, but not males (B = 0.02; 95 %CI: -0.16, 0.19). Relative to women with urinary fluoride concentrations in the first quartile (0.05-0.32 mg/L), those with levels in the third quartile (0.49-0.75 mg/L) had higher FT4 and TT4 (i.e., inverted J-shaped associations), but the association was not statistically significant after adjustment for covariates (p = 0.06). Water fluoride concentration showed a U-shaped association with maternal FT4, whereby women with water fluoride concentrations in the second (0.13-0.52 mg/L) and third (0.52-0.62 mg/L) quartiles had significantly lower FT4 compared to those with levels in the first quartile (0.04-0.13 mg/L). Adjustment for maternal iodine status did not change the results. DISCUSSION: Fluoride exposure was associated with alterations in maternal thyroid hormone levels, the magnitude of which appeared to vary by fetal sex. Given the importance of maternal thyroid hormones for fetal neurodevelopment, replication of findings is warranted.
Assuntos
Iodo , Tiroxina , Masculino , Feminino , Humanos , Gravidez , Fluoretos/efeitos adversos , Canadá , Hormônios Tireóideos , Tireotropina , ÁguaRESUMO
BACKGROUND: Prenatal fluoride exposure can have adverse effects on children's development; however, associations with visual and cardiac autonomic nervous system functioning are unknown. We examined associations between prenatal fluoride exposure and visual acuity and heart rate variability (HRV) in 6-month-old infants. METHODS: We used data from Canadian mother-infant pairs participating in the Maternal-Infant Research on Environmental Chemicals (MIREC) cohort. We estimated prenatal fluoride exposure using: i) fluoride concentration in drinking water (mg/L), ii) maternal urinary fluoride adjusted for specific gravity (MUFSG; mg/L) and averaged across pregnancy, and iii) maternal fluoride intake (µg/kg/day) from consumption of water, tea, and coffee, adjusted for maternal body weight (kg). We used multivariable linear regression to examine associations between each measure of fluoride exposure and Teller Acuity Card visual acuity scores (n = 435) and assessed HRV (n = 400) using two measures: root mean square of successive differences (RMSSD) and the standard deviation of N-N intervals (SDNN) measured at 6-months of age. RESULTS: Median (IQR) values for water fluoride, MUFSG, and daily fluoride intake were 0.20 (IQR: 0.13-0.56) mg/L; 0.44 (0.28-0.70) mg/L and 4.82 (2.58-10.83) µg/kg/day, respectively. After adjustment for confounding variables, water fluoride concentration was associated with poorer infant visual acuity (B = -1.51; 95 % CI: -2.14,-0.88) and HRV as indicated by lower RMSSD (B = -1.60; 95 % CI: -2.74,-0.46) but not SDNN. Maternal fluoride intake was also associated with poorer visual acuity (B = -0.82; 95 % CI: -1.35,-0.29) and lower RMSSD (B = -1.22; 95 % CI: -2.15,-0.30). No significant associations were observed between MUFSG and visual acuity or HRV. CONCLUSION: Fluoride in drinking water was associated with reduced visual acuity and alterations in cardiac autonomic function in infancy, adding to the growing body of evidence suggesting fluoride's developmental neurotoxicity.
Assuntos
Água Potável , Fluoretos , Feminino , Humanos , Lactente , Gravidez , Sistema Nervoso Autônomo , Canadá , Frequência Cardíaca , Acuidade VisualRESUMO
BACKGROUND: While fluoride can have thyroid-disrupting effects, associations between low-level fluoride exposure and thyroid conditions remain unclear, especially during pregnancy when insufficient thyroid hormones can adversely impact offspring development. OBJECTIVES: We evaluated associations between fluoride exposure and hypothyroidism in a Canadian pregnancy cohort. METHODS: We measured fluoride concentrations in drinking water and three dilution-corrected urine samples and estimated fluoride intake based on self-reported beverage consumption. We classified women enrolled in the Maternal-Infant Research on Environmental Chemicals Study as euthyroid (n = 1301), subclinical hypothyroid (n = 100) or primary hypothyroid (n = 107) based on their thyroid hormone levels in trimester one. We used multinomial logistic regression to estimate the association between fluoride exposure and classification of either subclinical or primary hypothyroidism and considered maternal thyroid peroxidase antibody (TPOAb) status, a marker of autoimmune hypothyroidism, as an effect modifier. In a subsample of 466 mother-child pairs, we used linear regression to explore the association between maternal hypothyroidism and child Full-Scale IQ (FSIQ) at ages 3-to-4 years and tested for effect modification by child sex. RESULTS: A 0.5 mg/L increase in drinking water fluoride concentration was associated with a 1.65 (95 % confidence interval [CI]: 1.04, 2.60) increased odds of primary hypothyroidism. In contrast, we did not find a significant association between urinary fluoride (adjusted odds ratio [aOR]: 1.00; 95%CI: 0.73, 1.39) or fluoride intake (aOR: 1.25; 95%CI: 0.99, 1.57) and hypothyroidism. Among women with normal TPOAb levels, the risk of primary hypothyroidism increased with both increasing water fluoride and fluoride intake (aOR water fluoride concentration: 2.85; 95%CI: 1.25, 6.50; aOR fluoride intake: 1.75; 95%CI: 1.27, 2.41). Children born to women with primary hypothyroidism had lower FSIQ scores compared to children of euthyroid women, especially among boys (B coefficient: -8.42; 95 % CI: -15.33, -1.50). DISCUSSION: Fluoride in drinking water was associated with increased risk of hypothyroidism in pregnant women. Thyroid disruption may contribute to developmental neurotoxicity of fluoride.
Assuntos
Água Potável , Hipotireoidismo , Complicações na Gravidez , Masculino , Feminino , Humanos , Gravidez , Pré-Escolar , Fluoretos/efeitos adversos , Canadá/epidemiologia , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/epidemiologia , Hormônios Tireóideos , TireotropinaRESUMO
Objective: Fluoride exposure >1.5 mg/L from water has been associated with adverse pregnancy and birth outcomes. Little is known, however, about the effect of fluoride at levels consistent with water fluoridation (i.e., 0.7 mg/L) on pregnancy and birth outcomes. We examined the relationship between maternal fluoride exposure, fertility, and birth outcomes in a Canadian pregnancy cohort living in areas where municipal drinking water fluoride concentrations ranged from 0.04 to 0.87 mg/L. Methods: Using data from the Maternal-Infant Research on Environmental Chemicals (MIREC) study, we estimated fluoride exposure during pregnancy using three different metrics: (1) maternal urinary fluoride concentrations standardized for specific gravity (MUFSG) and averaged across all three trimesters (N = 1566), (2) water fluoride concentration (N = 1370), and (3) fluoride intake based on self-reported consumption of water, coffee, and tea, adjusted for body weight (N = 1192). Data on fertility, birth weight, gestational age, preterm birth, and small-for-gestational age (SGA) were assessed. We used multiple linear regression to examine associations between fluoride exposure, birth weight and gestational age, and logistic regression to examine associations with fertility, preterm birth, and SGA, adjusted for relevant covariates. Results: Median (IQR) MUFSG was 0.50 (0.33-0.76) mg/L, median water fluoride was 0.52 (0.17-0.64) mg/L, and median fluoride intake was 0.008 (0.003-0.013) mg/kg/day. MUFSG, water fluoride concentrations, and fluoride intake were not significantly associated with fertility, birth weight, gestational age, preterm birth, or SGA. Fetal sex did not modify any of the associations. Conclusion: Fluoride exposure during pregnancy was not associated with fertility or birth outcomes in this Canadian cohort.
RESUMO
In animal studies, the combination of in utero fluoride exposure and low iodine has greater negative effects on offspring learning and memory than either alone, but this has not been studied in children. We evaluated whether the maternal urinary iodine concentration (MUIC) modifies the association between maternal urinary fluoride (MUF) and boys' and girls' intelligence. We used data from 366 mother-child dyads in the Maternal-Infant Research on Environmental Chemicals Study. We corrected trimester-specific MUF and MUIC for creatinine, and averaged them to yield our exposure variables (MUFCRE, mg/g; MUICCRE, µg/g). We assessed children's full-scale intelligence (FSIQ) at 3 to 4 years. Using multiple linear regression, we estimated a three-way interaction between MUFCRE, MUICCRE, and child sex on FSIQ, controlling for covariates. The MUICCRE by MUFCRE interaction was significant for boys (p = 0.042), but not girls (p = 0.190). For boys whose mothers had low iodine, a 0.5 mg/g increase in MUFCRE was associated with a 4.65-point lower FSIQ score (95% CI: -7.67, -1.62). For boys whose mothers had adequate iodine, a 0.5 mg/g increase in MUFCRE was associated with a 2.95-point lower FSIQ score (95% CI: -4.77, -1.13). These results suggest adequate iodine intake during pregnancy may minimize fluoride's neurotoxicity in boys.
Assuntos
Iodo , Efeitos Tardios da Exposição Pré-Natal , Feminino , Fluoretos/efeitos adversos , Humanos , Inteligência , Testes de Inteligência , Iodo/efeitos adversos , Mães , GravidezRESUMO
Histone variants H2A.Z and H3.3 are epigenetic regulators of memory, but roles of other variants are not well characterized. macroH2A (mH2A) is a structurally unique histone that contains a globular macrodomain connected to the histone region by an unstructured linker. Here we assessed if mH2A regulates memory and if this role varies for the two mH2A-encoding genes, H2afy (mH2A1) and H2afy2 (mH2A2). We show that fear memory is impaired in mH2A1, but not in mH2A2-deficient mice, whereas both groups were impaired in a non-aversive spatial memory task. However, impairment was larger for mH2A1- deficient mice, indicating a preferential role for mH2A1 over mH2A2 in memory. Accordingly, mH2A1 depletion in the mouse hippocampus resulted in more extensive transcriptional de-repression compared to mH2A2 depletion. mH2A1-depleted mice failed to induce a normal transcriptional response to fear conditioning, suggesting that mH2A1 depletion impairs memory by altering transcription. Using chromatin immunoprecipitation (ChIP) sequencing, we found that both mH2A proteins are enriched on transcriptionally repressed genes, but only mH2A1 occupancy was dynamically modified during learning, displaying reduced occupancy on upregulated genes after training. These data identify mH2A as a regulator of memory and suggest that mH2A1 supports memory by repressing spurious transcription and promoting learning-induced transcriptional activation.
Assuntos
Hipocampo , Histonas , Animais , Hipocampo/metabolismo , Histonas/genética , Histonas/metabolismo , CamundongosRESUMO
While molecular analyses have provided insight into the phylogeny of ciliates, the few studies assessing intraspecific variation have largely relied on just a single locus [e.g., nuclear small subunit rDNA (nSSU-rDNA) or mitochondrial cytochrome oxidase I]. In this study, we characterize the diversity of several nuclear protein-coding genes plus both nSSU-rDNA and mitochondrial small subunit rDNA (mtSSU-rDNA) of five isolates of the ciliate morphospecies Chilodonella uncinata. Although these isolates have nearly identical nSSU-rDNA sequences, they differ by up to 8.0% in mtSSU-rDNA. Comparative analyses of all loci, including ß-tubulin paralogs, indicate a lack of recombination between strains, demonstrating that the morphospecies C. uncinata consists of multiple cryptic species. Further, there is considerable variation in substitution rates among loci as some protein-coding domains are nearly identical between isolates, while others differ by up to 13.2% at the amino acid level. Combining insights on macronuclear variation among isolates, the focus of this study, with published data from the micronucleus of two of these isolates, indicates that C. uncinata lineages are able to maintain both highly divergent and highly conserved genes within a rapidly evolving germline genome.
Assuntos
Cilióforos/genética , DNA Ribossômico/genética , Evolução Molecular , Cilióforos/classificação , Genoma , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Filogenia , Recombinação Genética/genética , Especificidade da Espécie , Tubulina (Proteína)/genéticaRESUMO
The multiple species concepts currently in use by the scientific community (e.g. Morphological, Biological, Phylogenetic) are united in that they all aim to capture the process of divergence between populations. For example, the Biological Species Concept defines a species as a natural group of organisms that is reproductively isolated from other such groups. Here we synthesize nearly a century of research on the ciliate genus Paramecium that highlights the shortcomings of our prevailing notions on the nature of species. In this lineage, there is discordance between morphology, mating behavior, and genetics, features assumed to be correlated, at least after sufficient time has passed, under all species concepts. Intriguingly, epigenetic phenomena are well documented in ciliates where they influence features such as germline/soma differentiation and mating type determination. Consequently, we hypothesize that divergence within ciliate populations is due to a dynamic interaction between genetic and epigenetic factors. The growing list of examples of epigenetic phenomena that potentially impact speciation (i.e. by influencing the dynamics of sex chromosomes, fate of hybrids, zygotic drive and genomic conflicts) suggests that interactions between genetics and epigenetics may also drive divergence in other eukaryotic lineages.
Assuntos
Especiação Genética , Paramecium/genética , Filogenia , Epigenômica , Isoenzimas/genéticaRESUMO
Rapid removal of histone H2A.Z from neuronal chromatin is a key step in learning-induced gene expression and memory formation, but mechanisms underlying learning-induced H2A.Z removal are unclear. Anp32e was recently identified as an H2A.Z-specific histone chaperone that removes H2A.Z from nucleosomes in dividing cells, but its role in non-dividing neurons is unclear. Moreover, prior studies investigated Anp32e function under steady-state rather than stimulus-induced conditions. Here, we show that Anp32e regulates H2A.Z binding in neurons under steady-state conditions, with lesser impact on stimulus-induced H2A.Z removal. Functionally, Anp32e depletion leads to H2A.Z-dependent impairment in transcription and dendritic arborization in cultured hippocampal neurons, as well as impaired recall of contextual fear memory and transcriptional regulation. Together, these data indicate that Anp32e regulates behavioral and morphological outcomes by preventing H2A.Z accumulation in chromatin rather than by regulating activity-mediated H2A.Z dynamics.
Assuntos
Dendritos/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Memória , Chaperonas Moleculares/metabolismo , Neurônios/metabolismo , Transcrição Gênica , Animais , Cromatina/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Emerging evidence suggests that histone variants are novel epigenetic regulators of memory, whereby histone H2A.Z suppresses fear memory. However, it is not clear if altered fear memory can also modify risk for PTSD, and whether these effects differ in males and females. Using conditional-inducible H2A.Z knockout (cKO) mice, we showed that H2A.Z binding is higher in females and that H2A.Z cKO enhanced fear memory only in males. However, H2A.Z cKO improved memory on the non-aversive object-in-place task in both sexes, suggesting that H2A.Z suppresses non-stressful memory irrespective of sex. Given that risk for fear-related disorders, such as PTSD, is biased toward females, we examined whether H2A.Z cKO also has sex-specific effects on fear sensitization in the stress-enhanced fear learning (SEFL) model of PTSD, as well as associated changes in pain sensitivity. We found that H2A.Z cKO reduced stress-induced sensitization of fear learning and pain responses preferentially in female mice, indicating that the effects of H2A.Z depend on sex and the type of task, and are influenced by history of stress. These data suggest that H2A.Z may be a sex-specific epigenetic risk factor for PTSD susceptibility, with implications for developing sex-specific therapeutic interventions.