Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Small ; 20(27): e2310239, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38299473

RESUMO

Solid-state hydrogen storage materials are safe and lightweight hydrogen carriers. Among the various solid-state hydrogen carriers, hydrogen boride (HB) sheets possess a high gravimetric hydrogen capacity (8.5 wt%). However, heating at high temperatures and/or strong ultraviolet illumination is required to release hydrogen (H2) from HB sheets. In this study, the electrochemical H2 release from HB sheets using a dispersion system in an organic solvent without other proton sources is investigated. H2 molecules are released from the HB sheets under the application of a cathodic potential. The Faradaic efficiency for H2 release from HB sheets reached >90%, and the onset potential for H2 release is -0.445 V versus Ag/Ag+, which is more positive than those from other proton sources, such as water or formic acid, under the same electrochemical conditions. The total electrochemically released H2 in a long-time experiment reached ≈100% of the hydrogen capacity of HB sheets. The H2 release from HB sheets is driven by a small bias; thus, they can be applied as safe and lightweight hydrogen carriers with economical hydrogen release properties.

2.
J Am Chem Soc ; 144(27): 12158-12166, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35762507

RESUMO

The reaction mechanism of the CH3OH synthesis by the hydrogenation of CO2 on Cu catalysts is unclear because of the challenge in experimentally detecting reaction intermediates formed by the hydrogenation of adsorbed formate (HCOOa). Thus, the objective of this study is to clarify the reaction mechanism of the CH3OH synthesis by establishing the kinetic natures of intermediates formed by the hydrogenation of adsorbed HCOOa on Cu(111). We exposed HCOOa on Cu(111) to atomic hydrogen at low temperatures of 200-250 K and observed the species using infrared reflection absorption (IRA) spectroscopy and temperature-programmed desorption (TPD) studies. In the IRA spectra, a new peak was observed upon the exposure of HCOOa on Cu(111) to atomic hydrogen at 200 K and was assigned to the adsorbed dioxymethylene (H2COOa) species. The intensity of the new peak gradually decreased with heating from 200 to 290 K, whereas the IR peaks representing HCOOa species increased correspondingly. In addition, small amounts of formaldehyde (HCHO), which were formed by the exposure of HCOOa species to atomic hydrogen, were detected in the TPD studies. Therefore, H2COOa is formed via hydrogenation by atomic hydrogen, which thermally decomposes at ∼250 K on Cu(111). We propose a potential diagram of the CH3OH synthesis via H2COOa from CO2 on Cu surfaces, with the aid of density functional theory calculations and literature data, in which the hydrogenation of bidentate HCOOa to H2COOa is potentially the rate-determining step and accounts for the apparent activation energy of the methanol synthesis from CO2 on Cu surfaces.

3.
Small ; 17(20): e2008010, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759365

RESUMO

Formic acid (HCOOH) can be catalytically decomposed into H2 and CO2 and is a promising hydrogen storage material. As H2 production catalysts, Cu surfaces allow selective HCOOH decarboxylation; however, the on-surface HCOOH decomposition reaction pathway remains controversial. In this study, the temperature dependence of the HCOOH/Cu(111) adsorption structures is elucidated by scanning tunneling microscopy and non-contact atomic force microscopy, establishing the adsorbate chemical species using density functional theory. 2D HCOOH islands at 80 K, linear chains of HCOOH and monodentate formate at 150 K, chain-like assemblies of monodentate and bidentate formate at 200 K, and bidentate formate clusters at 300 K are observed. At each temperature, the adsorbates experience attractive interactions among themselves. Such aggregation stabilizes them against desorption and decomposition. Thus, accurate evaluation of intermolecular interactions is essential to understand catalytic reactivity.


Assuntos
Formiatos , Hidrogênio , Adsorção , Catálise
4.
Phys Chem Chem Phys ; 23(34): 18628-18639, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34612400

RESUMO

SrFeO3-δ is known to be an effective oxygen ion conductor and oxygen vacancies are central to its performance. SrFeO3-δ displays four crystallographic structural transitions as it undergoes oxygen reduction over a broad range of operating temperatures. In this work, systematic density functional theory calculations using the Hubbard U correction were performed to understand oxygen vacancy interactions and migration as a function of vacancy concentrations in SrFeO3-δ (δ = 0-0.5). We found strong repulsion between oxygen vacancies at close distance while these oxygen vacancies are stabilized at further distance. We also found that the oxygen migration is highly anisotropic and the calculated effective migration energy for the oxygen migration tends to be high and increases from 0.91 eV to 1.30 eV as δ goes from 0.125 (tetragonal phase) to 0.25 (orthorhombic phase). In the ordered brownmillerite SrFeO2.625, the oxygen migration is restricted in the one-dimensional channel because of the highly anisotropic nature of the crystal structure, resulting in the relatively low effective migration energy of 0.49 eV. This explains the experimental activation energy of 0.55 ± 0.05 eV. These results suggest the importance of regulating the oxygen migration path via the crystal structure design toward development of a SrFeO3-δ based fast oxygen conductor.

5.
Phys Chem Chem Phys ; 23(31): 16880-16887, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34328163

RESUMO

The reaction of nitric oxide (NO) on Cu(100) is studied by scanning tunneling microscopy, electron energy loss spectroscopy and density functional theory calculations. The NO molecules adsorb mainly as monomers at 64 K, and react and dissociate to yield oxygen atoms on the surface at ∼70 K. The temperature required for the dissociation is significantly low for Cu(100), compared to those for Cu(111) and Cu(110). The minimum energy pathway of the reaction is via (NO)2 formation, which converts into a flat-lying ONNO and then dissociates into N2O and O with a considerably low activation energy. We propose that the formation of (NO)2 and flat-lying ONNO is the key to the exceptionally high reactivity of NO on Cu(100).

6.
Nano Lett ; 20(8): 5879-5884, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32678605

RESUMO

Tip-enhanced Raman scattering (TERS) in ångström-scale plasmonic cavities has drawn increasing attention. However, Raman scattering at vanishing cavity distances remains unexplored. Here, we show the evolution of TERS in transition from the tunneling regime to atomic point contact (APC). A stable APC is reversibly formed in the junction between an Ag tip and ultrathin ZnO or NaCl films on the Ag(111) surface at 10 K. An abrupt increase of the TERS intensity occurs upon APC formation for ZnO, but not for NaCl. This remarkable observation is rationalized by a difference in hybridization between the Ag tip and these films, which determines the contribution of charge transfer enhancement in the fused plasmonic junction. The strong hybridization between the Ag tip and ZnO is corroborated by the appearance of a new vibrational mode upon APC formation, whereas it is not observed for the chemically inert NaCl.

7.
Nano Lett ; 20(11): 8339-8345, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33090808

RESUMO

Performing bottom-up synthesis by using molecules adsorbed on a surface is an effective method to yield functional polycyclic aromatic hydrocarbons (PAHs) and nanocarbon materials. The intramolecular cyclodehydrogenation of hydrocarbons is a critical process in this synthesis; however, thus far, its elementary steps have not been elucidated thoroughly. In this study, we utilize the metal tip of a low-temperature noncontact atomic force microscope as a manipulable metal surface to locally activate dehydrogenation for PAH-forming cyclodehydrogenation. This method leads to the dissociation of a H atom of an intermediate to yield the cyclodehydrogenated product in a target-selective and reproducible manner. We demonstrate the metal-tip-catalyzed dehydrogenation for both benzenoid and nonbenzonoid PAHs, suggesting its universal applicability as a catalyst for nanographene synthesis.

8.
J Chem Phys ; 152(10): 104707, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171202

RESUMO

We present a density functional theory study of atomic and molecular adsorption on a single Pt atom deposited at the edges of graphene. We investigate geometric and electronic structures of atoms (H, C, N, and O) and molecules (O2, CO, OH, NO, H2O, and OOH) on a variety of Pt deposited graphene edges and compare the adsorption states with those on a Pt(111) surface and on a Pt single atom. Furthermore, using the calculated adsorption energy and simple kinetic models, the catalytic activities of a Pt single-atom catalyst for the oxygen reduction reaction and CO oxidation are discussed.

9.
Nano Lett ; 19(8): 5725-5731, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31361964

RESUMO

Low-temperature tip-enhanced Raman spectroscopy (TERS) enables chemical identification with single-molecule sensitivity and extremely high spatial resolution even down to the atomic scale. The large enhancement of Raman scattering obtained in TERS can originate from physical and/or chemical enhancement mechanisms. Whereas physical enhancement requires a strong near-field through excitation of localized surface plasmons, chemical enhancement is governed by resonance in the electronic structure of the sample, which is also known as resonance Raman spectroscopy. Here we report on tip-enhanced resonance Raman spectroscopy (TERRS) of ultrathin ZnO layers epitaxially grown on a Ag(111) surface, where both enhancement mechanisms are operative. In combination with scanning tunneling spectroscopy (STS), it is demonstrated that the TERRS intensity strongly depends on the local electronic resonance of the ZnO/Ag(111) interface. We also reveal that the spatial resolution of TERRS is dependent on the tip-surface distance and reaches nearly 1 nm in the tunneling regime, which can be rationalized by strong-field confinement resulting from an atomic-scale protrusion on the tip apex. Comparison of STS and TERRS mapping clearly shows a correlation between resonantly enhanced Raman scattering and the local electronic states at near-atomic resolution. Our results suggest that TERRS is a new approach for the atomic-scale optical characterization of local electronic states.

10.
J Chem Phys ; 150(15): 154707, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005107

RESUMO

We present a density functional theory study on the adsorption and decomposition mechanisms of monomeric formic acid (HCOOH) on a Cu(111) surface. We used Perdew-Burke-Ernzerhof (PBE) functional, PBE with dispersion correction (PBE-D2), and van der Waals density functionals (vdW-DFs). We found that the adsorption energy of HCOOH by using the PBE functional is smaller than the experimental value, while the PBE-D2 and vdW-DFs give better agreement with experimental results. The activation energies of decomposition calculated by using PBE-D2 and vdW-DFs are lower compared with desorption energies, seemingly in contradiction with experimental findings at room temperature, in which no decomposition of HCOOH on Cu(111) is observed when the surface is exposed to the gas phase HCOOH. We performed the reaction rate analysis based on the first-principles calculations for desorption and decomposition processes to clarify this contradiction. We found that the desorption of monomeric HCOOH is faster than that of its decomposition rate at room temperature because of a much larger pre-exponential factor. Thus, no decomposition of monomeric HCOOH should take place at room temperature. Our analysis revealed the competition between desorption and decomposition processes of HCOOH.

11.
Phys Chem Chem Phys ; 20(17): 12210-12216, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687136

RESUMO

We observed individual sodium (Na) atoms and their complexes with water molecules on Cu(110) with scanning tunneling microscopy at 6 K. We induced the reaction of a Na adatom with one or two water molecules, which yielded two kinds of Na-water complexes. Density functional theory calculations were performed to study the structure of the complexes, which revealed that the water molecules are bonded to a Na atom along the [11[combining macron]0] direction via an oxygen atom with the hydrogen atoms pointing toward the Cu atoms of the surface. The 1 : 1 Na-water complex is stablized by 225 meV upon bond formation, and the ligand water moves back and forth around the Na atom. The complex can accommodate another water molecule to yield a 1 : 2 Na-water complex with an energy gain of 214 meV. The atomic-scale identification of the alkali-water complexes would give fundamental insights into the hydration process of alkali cations and their specific adsorption onto metal electrodes.

12.
J Chem Phys ; 149(16): 164702, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384717

RESUMO

Hydrogen adsorption on Pt(111) has been actively studied using semilocal approximations within the density functional theory featuring simultaneous adsorption of hydrogen on multiple sites, i.e., fcc, atop, and hcp. Considering the accuracy needed to detail the feature, we revisit this problem with the help of higher level of theory, the adiabatic connection fluctuation dissipation theorem within the random phase approximation. Our simulation emphasizes important roles played by the equilibrium lattice parameter of the surface, mass of the hydrogen isotope, and hydrogen coverage. The insight acquired in this study provides a way to consistently interpret electrochemical and spectroscopic data.

13.
J Chem Phys ; 147(4): 044708, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28764358

RESUMO

The image potential state is one of the fundamental surface electronic states and has a great relevance to many surface phenomena, but its accurate description is a great challenge for the semilocal density functional. Here, we use the nonlocal van der Waals density functional to describe the image potential states of graphene, graphite, and carbon nanotubes. We found that although it does not yield the correct image potential outside the surface, the van der Waals density functional improves the description of image potential states because of the nonlocal correlation potential. Our study demonstrates the usefulness of the van der Waals density functional to study the surface electronic properties.

14.
J Chem Phys ; 147(9): 094702, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28886627

RESUMO

We investigated the adsorption of CO2 on the flat, stepped, and kinked copper surfaces from density functional theory calculations as well as the temperature programmed desorption and X-ray photoelectron spectroscopy. Several exchange-correlation functionals have been considered to characterize CO2 adsorption on the copper surfaces. We used the van der Waals density functionals (vdW-DFs), i.e., the original vdW-DF (vdW-DF1), optB86b-vdW, and rev-vdW-DF2, as well as the Perdew-Burke-Ernzerhof (PBE) with dispersion correction (PBE-D2). We have found that vdW-DF1 and rev-vdW-DF2 functionals slightly underestimate the adsorption energy, while PBE-D2 and optB86b-vdW functionals give better agreement with the experimental estimation for CO2 on Cu(111). The calculated CO2 adsorption energies on the flat, stepped, and kinked Cu surfaces are 20-27 kJ/mol, which are compatible with the general notion of physisorbed species on solid surfaces. Our results provide a useful insight into appropriate vdW functionals for further investigation of related CO2 activation on Cu surfaces such as methanol synthesis and higher alcohol production.

15.
Phys Chem Chem Phys ; 18(6): 4541-6, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26796760

RESUMO

Using low-temperature scanning tunneling microscopy (STM), the adsorption and reaction of hydrogen sulfide (H2S) and its fragments (SH and S) on Cu(110) are investigated at 5 K. H2S adsorbs molecularly on the surface on top of a Cu atom. With voltage pulses of STM, it is possible to induce sequential dehydrogenation of H2S to SH and S. We found two kinds of adsorption structures of SH. The short-bridge site is the most stable site for SH, while the long-bridge site is the second. Density functional theory calculations show that the S-H axis is inclined from the surface normal for both species. The reaction of H2S with OH and O was directly observed to yield SH and S, respectively, providing a molecular-level insight into catalyst poisoning.

16.
Phys Rev Lett ; 115(23): 236101, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684126

RESUMO

We use scanning tunneling microscopy to visualize and thermal desorption spectroscopy to quantitatively measure that the binding of naphthalene molecules to graphene, a case of pure van der Waals interaction, strengthens with n and weakens with p doping of graphene. Density-functional theory calculations that include the van der Waals interaction in a seamless, ab initio way accurately reproduce the observed trend in binding energies. Based on a model calculation, we propose that the van der Waals interaction is modified by changing the spatial extent of graphene's π orbitals via doping.

17.
J Am Chem Soc ; 136(49): 17201-6, 2014 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-25429689

RESUMO

Oxide electronics is a promising alternative to the conventional silicon-based semiconductor technology, owing to the rich functionalities of oxide thin films and heterostructures. In contrast to the silicon surface, however, the electronic structure of the SrTiO3 surface, the most important substrate for oxide thin films growth, is not yet completely understood. Here we report on the electronic states of a reconstructed (001) surface of SrTiO3 determined in real space, with scanning tunneling microscopy/spectroscopy and density functional theory calculations. We found a remarkable energy dependence of the spectroscopic image: Theoretical analysis reveals that symmetry breaking at the surface lifts the degeneracy in the t2g state (dxy, dyz, and dzx) of Ti 3d orbitals, whose anisotropic spatial distribution leads to a sharp transition in the spectroscopic image as a function of energy. The knowledge obtained here could be used to gain further insights into emergent phenomena at the surfaces and interfaces with SrTiO3.

18.
Nano Lett ; 13(2): 481-5, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23327475

RESUMO

We have fabricated single C(60) molecule transistors with ferromagnetic Ni leads (FM-SMTs) by using an electrical break junction method and investigated their magnetotransport. The FM-SMTs exhibited clear gate-dependent hysteretic tunnel magnetoresistance (TMR) and the TMR values reached as high as -80%. The polarity of the TMR was found to be always negative over the entire bias range studied here. Density functional theory calculations show that hybridization between the Ni substrate states and the C(60) molecular orbitals generates an antiferromagnetic configuration in the local density of states near the Fermi level, which gives a reasonable explanation for the observed negative TMR.

19.
J Phys Condens Matter ; 35(43)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37467760

RESUMO

We study the electronic and optical properties of the hydrogen boride sheet by using the many-body perturbation theory with the perturbativeGW(G0W0) approximation. It was found that the hydrogen boride sheet shows a semimetallic electronic structure, supporting the previous theoretical study based on the semilocal density functional theory calculations. It was also found that the optical spectrum calculated based on the quasiparticle energies agrees well with the experiments. This work suggests thatG0W0approximation may be useful for predicting precise electronic and optical properties of the hydrogen boride sheet and its derivatives.

20.
Sci Adv ; 8(42): eabq5682, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36269832

RESUMO

Coherent phonon spectroscopy can provide microscopic insight into ultrafast lattice dynamics and its coupling to other degrees of freedom under nonequilibrium conditions. Ultrafast optical spectroscopy is a well-established method to study coherent phonons, but the diffraction limit has hampered observing their local dynamics directly. Here, we demonstrate nanoscale coherent phonon spectroscopy using ultrafast laser-induced scanning tunneling microscopy in a plasmonic junction. Coherent phonons are locally excited in ultrathin zinc oxide films by the tightly confined plasmonic field and are probed via the photoinduced tunneling current through an electronic resonance of the zinc oxide film. Concurrently performed tip-enhanced Raman spectroscopy allows us to identify the involved phonon modes. In contrast to the Raman spectra, the phonon dynamics observed in coherent phonon spectroscopy exhibit strong nanoscale spatial variations that are correlated with the distribution of the electronic local density of states resolved by scanning tunneling spectroscopy.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa