Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Brain ; 142(8): 2253-2264, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31236596

RESUMO

Lambert-Eaton myasthenic syndrome (LEMS) is an autoimmune disease of the neuromuscular junction caused by autoantibodies binding to P/Q-type voltage-gated calcium channels. Breakdown of the blood-brain barrier and diffusion of cerebellar granule/Purkinje cell-reactive autoantibodies into the CNS are critical for the pathogenesis of paraneoplastic cerebellar degeneration (PCD) with Lambert-Eaton myasthenic syndrome. We recently found evidence that glucose-regulated protein 78 (GRP78) autoantibodies in the plasma of patients with neuromyelitis optica promote the CNS access of AQP4 autoantibodies. In the present study, we investigated whether the GRP78 autoantibodies in PCD-LEMS IgG boost the brain uptake of cerebellar cell-reactive antibodies across the blood-brain barrier and facilitate cerebellar dysfunction. We first evaluated the effects of purified IgG from PCD-LEMS or PCD patients on the blood-brain barrier function in human brain microvascular endothelial cells using a high content imaging system with nuclear factor κB p65 and intracellular adhesion molecule 1 (ICAM1) immunostaining. Next, we identified GRP78 autoantibodies causing blood-brain barrier permeability in PCD-LEMS IgG by co-immunoprecipitation and the living cell-based antibody binding assays. Exposure of brain microvascular endothelial cells to IgG from PCD-LEMS patients induced nuclear factor κB p65 nuclear translocation, ICAM1 upregulation, reduced claudin-5 expression, increased permeability and increased autocrine IL-1ß and IL-8 secretion; the IgG from patients with Lambert-Eaton myasthenic syndrome did not have these effects. We detected GRP78 autoantibodies in the IgG of LEMS-PCD (83.3%, n = 18), but observed fewer in patients with LEMS (6.6%, n = 15) and none were observed in the control subjects (n = 8). The depletion of GRP78 autoantibodies reduced the biological effect of LEMS-PCD IgG on brain microvascular endothelial cells. These findings suggest that GRP78 autoantibodies play a role beyond neuromyelitis optica and that they have direct implications in the phenotypic differences between PCD-LEMS and LEMS.


Assuntos
Autoanticorpos/imunologia , Barreira Hematoencefálica/patologia , Proteínas de Choque Térmico/imunologia , Síndrome Miastênica de Lambert-Eaton/imunologia , Degeneração Paraneoplásica Cerebelar/imunologia , Idoso , Idoso de 80 Anos ou mais , Autoantígenos/imunologia , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Síndrome Miastênica de Lambert-Eaton/patologia , Neoplasias Pulmonares/imunologia , Masculino , Pessoa de Meia-Idade , Degeneração Paraneoplásica Cerebelar/patologia , Carcinoma de Pequenas Células do Pulmão/imunologia
2.
J Am Chem Soc ; 134(10): 4963-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22372917

RESUMO

A novel marine toxin, brevisulcenal-F (KBT-F, from karenia brevisulcata toxin) was isolated from the dinoflagellate Karenia brevisulcata. A red tide of K. brevisulcata in Wellington Harbour, New Zealand, in 1998 was extremely toxic to fish and marine invertebrates and also caused respiratory distress in harbor bystanders. An extract of K. brevisulcata showed potent mouse lethality and cytotoxicity, and laboratory cultures of K. brevisulcata produced a range of novel lipid-soluble toxins. A lipid soluble toxin, KBT-F, was isolated from bulk cultures by using various column chromatographies. Chemical investigations showed that KBT-F has the molecular formula C(107)H(160)O(38) and a complex polycyclic ether nature. NMR and MS/MS analyses revealed the complete structure for KBT-F, which is characterized by a ladder-frame polyether scaffold, a 2-methylbut-2-enal terminus, and an unusual substituted dihydrofuran at the other terminus. The main section of the molecule has 17 contiguous 6- and 7-membered ether rings. The LD(50) (mouse i.p.) for KBT-F was 0.032 mg/kg.


Assuntos
Éteres Cíclicos/toxicidade , Peixes , Proliferação Nociva de Algas , Animais , Éteres Cíclicos/química , Éteres Cíclicos/isolamento & purificação , Camundongos , Nova Zelândia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
3.
Ann Clin Transl Neurol ; 6(10): 2079-2087, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31568704

RESUMO

BACKGROUND: We previously reported the association between blood-brain barrier (BBB) dysfunction and glucose-regulated protein 78 (GRP 78) autoantibodies in neuromyelitis optica (NMO). OBJECTIVE: We clarify whether the BBB-endothelial cell activation induced by immunoglobulin G (IgG) is associated with the clinical phenotype, disease activity, and markers of BBB disruption. METHODS: We purified serum IgG from 24 serum samples from patients with NMO spectrum disorder (NMOSD), who were positive for anti-AQP4 antibodies (longitudinally extensive transverse myelitis [LETM], n = 14; optic neuritis [ON], n = 6; other phenotype, n = 4) and nine healthy controls. IgG was exposed to human brain microvascular endothelial cells (TY10) and the number of nuclear NF-κB p65-positive cells, as a marker of endothelial cell activation, was analyzed using a high-content imaging system. Change in BBB permeability was also measured. The presence of GRP78 autoantibodies was detected by Western blotting. RESULTS: In the LETM group, IgG significantly induced the nuclear translocation of NF-κB p65 in comparison to the ON and healthy control groups. A significant correlation was observed between the number of NF-κB nuclear-positive cells and clinical markers of BBB disruption, including Gd enhancement in spinal MRI and the cerebrospinal fluid/serum albumin ratio. This effect was significantly reduced at the remission phase in the individual NMOSD patients. Furthermore, GRP78 antibody positivity was associated with the LETM phenotype and disease severity in NMOSD patients. CONCLUSION: Endothelial cell activation was associated with the LETM phenotype, clinical markers of BBB disruption and disease activity. These observations may explain the phenotypic differences between the NMOSD subtypes, LETM, and isolated ON.


Assuntos
Autoanticorpos/sangue , Barreira Hematoencefálica/fisiopatologia , Proteínas de Choque Térmico/imunologia , Mielite Transversa , Neuromielite Óptica , Neurite Óptica , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Chaperona BiP do Retículo Endoplasmático , Feminino , Humanos , Imunoglobulina G , Masculino , Pessoa de Meia-Idade , Mielite Transversa/sangue , Mielite Transversa/imunologia , Mielite Transversa/fisiopatologia , Neuromielite Óptica/sangue , Neuromielite Óptica/imunologia , Neuromielite Óptica/fisiopatologia , Neurite Óptica/sangue , Neurite Óptica/imunologia , Neurite Óptica/fisiopatologia , Fenótipo , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa