Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain ; 147(5): 1887-1898, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38193360

RESUMO

RFC1 disease, caused by biallelic repeat expansion in RFC1, is clinically heterogeneous in terms of age of onset, disease progression and phenotype. We investigated the role of the repeat size in influencing clinical variables in RFC1 disease. We also assessed the presence and role of meiotic and somatic instability of the repeat. In this study, we identified 553 patients carrying biallelic RFC1 expansions and measured the repeat expansion size in 392 cases. Pearson's coefficient was calculated to assess the correlation between the repeat size and age at disease onset. A Cox model with robust cluster standard errors was adopted to describe the effect of repeat size on age at disease onset, on age at onset of each individual symptoms, and on disease progression. A quasi-Poisson regression model was used to analyse the relationship between phenotype and repeat size. We performed multivariate linear regression to assess the association of the repeat size with the degree of cerebellar atrophy. Meiotic stability was assessed by Southern blotting on first-degree relatives of 27 probands. Finally, somatic instability was investigated by optical genome mapping on cerebellar and frontal cortex and unaffected peripheral tissue from four post-mortem cases. A larger repeat size of both smaller and larger allele was associated with an earlier age at neurological onset [smaller allele hazard ratio (HR) = 2.06, P < 0.001; larger allele HR = 1.53, P < 0.001] and with a higher hazard of developing disabling symptoms, such as dysarthria or dysphagia (smaller allele HR = 3.40, P < 0.001; larger allele HR = 1.71, P = 0.002) or loss of independent walking (smaller allele HR = 2.78, P < 0.001; larger allele HR = 1.60; P < 0.001) earlier in disease course. Patients with more complex phenotypes carried larger expansions [smaller allele: complex neuropathy rate ratio (RR) = 1.30, P = 0.003; cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) RR = 1.34, P < 0.001; larger allele: complex neuropathy RR = 1.33, P = 0.008; CANVAS RR = 1.31, P = 0.009]. Furthermore, larger repeat expansions in the smaller allele were associated with more pronounced cerebellar vermis atrophy (lobules I-V ß = -1.06, P < 0.001; lobules VI-VII ß = -0.34, P = 0.005). The repeat did not show significant instability during vertical transmission and across different tissues and brain regions. RFC1 repeat size, particularly of the smaller allele, is one of the determinants of variability in RFC1 disease and represents a key prognostic factor to predict disease onset, phenotype and severity. Assessing the repeat size is warranted as part of the diagnostic test for RFC1 expansion.


Assuntos
Idade de Início , Proteína de Replicação C , Humanos , Masculino , Feminino , Proteína de Replicação C/genética , Adulto , Expansão das Repetições de DNA/genética , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Criança , Fenótipo , Índice de Gravidade de Doença , Pré-Escolar , Progressão da Doença
2.
Pract Neurol ; 2020 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-32980811

RESUMO

Mitochondrial neurogastrointestinal encephalopathy (MNGIE) is a rare autosomal recessive condition. Deficiency of thymidine phosphorylase disrupts the nucleoside pool, with progressive secondary mitochondrial DNA damage. MNGIE is clinically diagnosable because of a distinctive tetrad of gastrointestinal dysmotility, progressive external ophthalmoplegia, demyelinating neuropathy and asymptomatic leucoencephalopathy. The diagnosis may be confirmed genetically or biochemically. Misdiagnosis is frequent, but early and accurate recognition allows the possibility of novel transplant therapies capable of rectifying the biochemical defects. Its management remains difficult in the face of progressive disability and the risks of treatment.

3.
J Neurol Neurosurg Psychiatry ; 89(7): 762-768, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437916

RESUMO

BACKGROUND: Defects in glycosylation of alpha-dystroglycan (α-DG) cause autosomal-recessive disorders with wide clinical and genetic heterogeneity, with phenotypes ranging from congenital muscular dystrophies to milder limb girdle muscular dystrophies. Patients show variable reduction of immunoreactivity to antibodies specific for glycoepitopes of α-DG on a muscle biopsy. Recessive mutations in 18 genes, including guanosine diphosphate mannose pyrophosphorylase B (GMPPB), have been reported to date. With no specific clinical and pathological handles, diagnosis requires parallel or sequential analysis of all known genes. METHODS: We describe clinical, genetic and biochemical findings of 21 patients with GMPPB-associated dystroglycanopathy. RESULTS: We report eight novel mutations and further expand current knowledge on clinical and muscle MRI features of this condition. In addition, we report a consistent shift in the mobility of beta-dystroglycan (ß-DG) on Western blot analysis of all patients analysed by this mean. This was only observed in patients with GMPPB in our large dystroglycanopathy cohort. We further demonstrate that this mobility shift in patients with GMPPB was due to abnormal N-linked glycosylation of ß-DG. CONCLUSIONS: Our data demonstrate that a change in ß-DG electrophoretic mobility in patients with dystroglycanopathy is a distinctive marker of the molecular defect in GMPPB.


Assuntos
Distroglicanas/metabolismo , Guanosina Difosfato Manose/genética , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Mutação/genética , Nucleotidiltransferases/genética , Adolescente , Idoso , Biomarcadores/metabolismo , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofias Musculares/patologia
4.
Muscle Nerve ; 57(3): 380-387, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29053898

RESUMO

INTRODUCTION: Earlier small case series and clinical observations reported on chronic pain playing an important role in facioscapulohumeral dystrophy (FSHD). The aim of this study was to determine the characteristics and impact of pain on quality of life (QoL) in patients with FSHD. METHODS: We analyzed patient reported outcome measures collected through the U.K. FSHD Patient Registry. RESULTS: Of 398 patients, 88.6% reported pain at the time of study. The most frequent locations were shoulders and lower back. A total of 203 participants reported chronic pain, 30.4% of them as severe. The overall disease impact on QoL was significantly higher in patients with early onset and long disease duration. Chronic pain had a negative impact on all Individualised Neuromuscular Quality of Life Questionnaire domains and overall disease score. DISCUSSION: Our study shows that pain in FSHD type 1 (FSHD1) is frequent and strongly impacts on QoL, similar to other chronic, painful disorders. Management of pain should be considered when treating FSHD1 patients. Muscle Nerve 57: 380-387, 2018.


Assuntos
Dor Crônica/psicologia , Distrofia Muscular Facioescapuloumeral/psicologia , Qualidade de Vida/psicologia , Adulto , Idoso , Dor Crônica/complicações , Dor Crônica/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular Facioescapuloumeral/complicações , Distrofia Muscular Facioescapuloumeral/diagnóstico , Medição da Dor , Índice de Gravidade de Doença , Adulto Jovem
5.
Neurogenetics ; 18(2): 111-117, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28229249

RESUMO

We describe a family with an autosomal dominant familial dyskinesia resembling myoclonus-dystonia associated with a novel missense mutation in ADCY5, found through whole-exome sequencing. A tiered analytical approach was used to analyse whole-exome sequencing data from an affected grandmother-granddaughter pair. Whole-exome sequencing identified 18,000 shared variants, of which 46 were non-synonymous changes not present in a local cohort of control exomes (n = 422). Further filtering based on predicted splicing effect, minor allele frequency in the 1000 Genomes Project and on phylogenetic conservation yielded 13 candidate variants, of which the heterozygous missense mutation c.3086T>G, p. M1029R in ADCY5 most closely matched the observed phenotype. This report illustrates the utility of whole-exome sequencing in cases of undiagnosed movement disorders with clear autosomal dominant inheritance. Moreover, ADCY5 mutations should be considered in cases with apparent myoclonus-dystonia, particularly where SCGE mutations have been excluded. ADCY5-related dyskinesia may manifest variable expressivity within a single family, and affected individuals may be initially diagnosed with differing neurological phenotypes.


Assuntos
Adenilil Ciclases/genética , Discinesias/genética , Distúrbios Distônicos/genética , Adolescente , Adulto , Pré-Escolar , Discinesias/complicações , Distúrbios Distônicos/complicações , Família , Feminino , Humanos , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Linhagem , Fenótipo
6.
Brain ; 138(Pt 10): 2847-58, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264513

RESUMO

Haematopoietic stem cell transplantation has been proposed as treatment for mitochondrial neurogastrointestinal encephalomyopathy, a rare fatal autosomal recessive disease due to TYMP mutations that result in thymidine phosphorylase deficiency. We conducted a retrospective analysis of all known patients suffering from mitochondrial neurogastrointestinal encephalomyopathy who underwent allogeneic haematopoietic stem cell transplantation between 2005 and 2011. Twenty-four patients, 11 males and 13 females, median age 25 years (range 10-41 years) treated with haematopoietic stem cell transplantation from related (n = 9) or unrelated donors (n = 15) in 15 institutions worldwide were analysed for outcome and its associated factors. Overall, 9 of 24 patients (37.5%) were alive at last follow-up with a median follow-up of these surviving patients of 1430 days. Deaths were attributed to transplant in nine (including two after a second transplant due to graft failure), and to mitochondrial neurogastrointestinal encephalomyopathy in six patients. Thymidine phosphorylase activity rose from undetectable to normal levels (median 697 nmol/h/mg protein, range 262-1285) in all survivors. Seven patients (29%) who were engrafted and living more than 2 years after transplantation, showed improvement of body mass index, gastrointestinal manifestations, and peripheral neuropathy. Univariate statistical analysis demonstrated that survival was associated with two defined pre-transplant characteristics: human leukocyte antigen match (10/10 versus <10/10) and disease characteristics (liver disease, history of gastrointestinal pseudo-obstruction or both). Allogeneic haematopoietic stem cell transplantation can restore thymidine phosphorylase enzyme function in patients with mitochondrial neurogastrointestinal encephalomyopathy and improve clinical manifestations of mitochondrial neurogastrointestinal encephalomyopathy in the long term. Allogeneic haematopoietic stem cell transplantation should be considered for selected patients with an optimal donor.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Pseudo-Obstrução Intestinal/cirurgia , Encefalomiopatias Mitocondriais/cirurgia , Resultado do Tratamento , Adolescente , Adulto , Peso Corporal , Encéfalo/patologia , Criança , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Distrofia Muscular Oculofaríngea , Condução Nervosa/fisiologia , Exame Neurológico , Neutrófilos , Oftalmoplegia/congênito , Estudos Retrospectivos , Análise de Sobrevida , Timidina Fosforilase/metabolismo , Transplante Homólogo/métodos , Adulto Jovem
7.
Neuromuscul Disord ; 34: 27-31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38052666

RESUMO

Genetic variation at HNRNPA2B1 is associated with inclusion body myopathy, Paget's disease and paediatric onset oculopharyngeal muscular dystrophy. We present a pedigree where a mother and two daughters presented with adolescent to early-adulthood onset of symptoms reminiscent of oculopharyngeal muscular dystrophy or chronic progressive external ophthalmoplegia, with a later limb-girdle pattern of weakness. Creatine Kinase was ∼1000 U/L. Myoimaging identified fatty replacement of sartorius, adductors longus and magnus, biceps femoris, semitendinosus and gastrocnemii. Muscle biopsies showed a variation of fibre size, occasional rimmed vacuoles and increased internalised myonuclei. Cases were heterozygous for a frameshift variant at HNRNPA2B1, consistent with a dominant and fully-penetrant mode of inheritance. Genetic variation at HNRNPA2B1 should be considered in adults with an oculopharyngeal muscular dystrophy-like or chronic progressive external ophthalmoplegia-like myopathy where initial testing fails to identify a cause.


Assuntos
Doenças Musculares , Distrofia Muscular Oculofaríngea , Oftalmoplegia Externa Progressiva Crônica , Adolescente , Adulto , Criança , Humanos , Músculo Esquelético/patologia , Doenças Musculares/genética , Distrofia Muscular Oculofaríngea/diagnóstico , Distrofia Muscular Oculofaríngea/genética , Distrofia Muscular Oculofaríngea/patologia , Oftalmoplegia Externa Progressiva Crônica/patologia , Linhagem , Fenótipo
8.
Nat Commun ; 15(1): 6327, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068203

RESUMO

Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness.


Assuntos
Músculo Esquelético , Expansão das Repetições de Trinucleotídeos , População Branca , Humanos , Masculino , Feminino , Adulto , Expansão das Repetições de Trinucleotídeos/genética , Pessoa de Meia-Idade , População Branca/genética , Músculo Esquelético/patologia , Transportadores de Cassetes de Ligação de ATP/genética , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/patologia , Linhagem , Idoso , Adulto Jovem , Fibroblastos/metabolismo , Fibroblastos/patologia , Debilidade Muscular/genética , Debilidade Muscular/patologia , Adolescente , Distrofias Musculares
9.
Hum Mutat ; 34(9): 1260-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23696415

RESUMO

Mutations in the mitochondrial genome, and in particular the mt-tRNAs, are an important cause of human disease. Accurate classification of the pathogenicity of novel variants is vital to allow accurate genetic counseling for patients and their families. The use of weighted criteria based on functional studies-outlined in a validated pathogenicity scoring system--is therefore invaluable in determining whether novel or rare mt-tRNA variants are pathogenic. Here, we describe the identification of nine novel mt--tRNA variants in nine families, in which the probands presented with a diverse range of clinical phenotypes including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, isolated progressive external ophthalmoplegia, epilepsy, deafness and diabetes. Each of the variants identified (m.4289T>C, MT-TI; m.5541C>T, MT-TW; m.5690A>G, MT-TN; m.7451A>T, MT-TS1; m.7554G>A, MT-TD; m.8304G>A, MT-TK; m.12206C>T, MT-TH; m.12317T>C, MT-TL2; m.16023G>A, MT-TP) was present in a different tRNA, with evidence in support of pathogenicity, and where possible, details of mutation transmission documented. Through the application of the pathogenicity scoring system, we have classified six of these variants as "definitely pathogenic" mutations (m.5541C>T, m.5690A>G, m.7451A>T, m.12206C>T, m.12317T>C, and m.16023G>A), whereas the remaining three currently lack sufficient evidence and are therefore classed as 'possibly pathogenic' (m.4289T>C, m.7554G>A, and m.8304G>A).


Assuntos
Doenças Mitocondriais/genética , Mutação Puntual , RNA de Transferência/genética , RNA/genética , Adolescente , Adulto , Criança , DNA Mitocondrial/genética , Feminino , Variação Genética , Humanos , Síndrome MELAS/genética , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Doenças Mitocondriais/patologia , Encefalomiopatias Mitocondriais/genética , RNA/metabolismo , RNA Mitocondrial , RNA de Transferência/metabolismo , Análise de Sequência de DNA , Adulto Jovem
10.
Hum Mutat ; 34(8): 1111-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23606453

RESUMO

Limb girdle muscular dystrophy type 2L or anoctaminopathy is a condition mainly characterized by adult onset proximal lower limb muscular weakness and raised CK values, due to recessive ANO5 gene mutations. An exon 5 founder mutation (c.191dupA) has been identified in most of the British and German LGMD2L patients so far reported. We aimed to further investigate the prevalence and spectrum of ANO5 gene mutations and related clinical phenotypes, by screening 205 undiagnosed patients referred to our molecular service with a clinical suspicion of anoctaminopathy. A total of 42 unrelated patients had two ANO5 mutations (21%), whereas 14 carried a single change. We identified 34 pathogenic changes, 15 of which are novel. The c.191dupA mutation represents 61% of mutated alleles and appears to be less prevalent in non-Northern European populations. Retrospective clinical analysis corroborates the prevalently proximal lower limb phenotype, the male predominance and absence of major cardiac or respiratory involvement. Identification of cases with isolated hyperCKaemia and very late symptomatic male and female subjects confirms the extension of the phenotypic spectrum of the disease. Anoctaminopathy appears to be one of the most common adult muscular dystrophies in Northern Europe, with a prevalence of about 20%-25% in unselected undiagnosed cases.


Assuntos
Canais de Cloreto/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Mutação , Adulto , Idoso , Anoctaminas , Canais de Cloreto/metabolismo , Europa (Continente)/epidemiologia , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Distrofia Muscular do Cíngulo dos Membros/epidemiologia , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Fenótipo , Prevalência , Estudos Retrospectivos , Fatores Sexuais
11.
Nat Commun ; 13(1): 2306, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484142

RESUMO

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin ß2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.


Assuntos
Esclerose Lateral Amiotrófica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Distrofia Muscular Oculofaríngea , Esclerose Lateral Amiotrófica/genética , Animais , Mutação da Fase de Leitura , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Heterozigoto , Humanos , Distrofia Muscular Oculofaríngea/genética
12.
Acta Neuropathol ; 121(3): 421-7, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20721566

RESUMO

Unverricht-Lundborg disease (EPM1A), also known as Baltic myoclonus, is the most common form of progressive myoclonic epilepsy. It is inherited as an autosomal recessive trait, due to mutations in the Cystatin-B gene promoter region. Although there is much work on rodent models of this disease, there is very little published neuropathology in patients with EPM1A. Here, we present the neuropathology of a patient with genetically confirmed EPM1A, who died at the age of 76. There was atrophy and gliosis affecting predominantly the cerebellum, frontotemporal cortex, hippocampus and thalamus. We have identified neuronal cytoplasmic inclusions containing the lysosomal proteins, Cathepsin-B and CD68. These inclusions also showed immunopositivity to both TDP-43 and FUS, in some cases associated with an absence of normal neuronal nuclear TDP-43 staining. There were also occasional ubiquitinylated neuronal intranuclear inclusions, some of which were FUS immunopositive. This finding is consistent with neurodegeneration in EPM1A as at least a partial consequence of lysosomal damage to neurons, which have reduced Cystatin-B-related neuroprotection. It also reveals a genetically defined neurodegenerative disease with both FUS and TDP-43 related pathology.


Assuntos
Corpos de Inclusão/patologia , Corpos de Inclusão Intranuclear/patologia , Neurônios/patologia , Síndrome de Unverricht-Lundborg/patologia , Idoso , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Atrofia/patologia , Cistatina B/genética , Cistatina B/metabolismo , Proteínas de Ligação a DNA/metabolismo , Evolução Fatal , Feminino , Humanos , Corpos de Inclusão/metabolismo , Corpos de Inclusão Intranuclear/metabolismo , Mutação/genética , Neurônios/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Síndrome de Unverricht-Lundborg/genética , Síndrome de Unverricht-Lundborg/metabolismo
13.
Neuromuscul Disord ; 31(3): 249-252, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546848

RESUMO

A 63 year old male presented with a 20 year history of facial weakness and several years of nasal regurgitation and dysphonia. Examination revealed bilateral facial weakness with nasal speech. Serum creatine kinase was 918 U/L. Neurophysiological studies suggested a myopathy and biopsy of the left vastus lateralis showed serpentine basophilic inclusions in the sarcoplasm and strong oxidative enzyme activity suggesting mitochondria accumulation. The muscle MRI showed selective fatty replacement within semitendinosus, gastrocnemius and soleus indicative of a desminopathy. A heterozygous missense variant c.17C>G (p.Ser6Trp) was identified within DES, predicted to be pathogenic in silico and previously described in a family with distal limb weakness. There are no previous case reports of desminopathy presenting with facial weakness, to our knowledge. Diagnosis was suggested following myoimaging of clinically unaffected muscles. Our study highlights the importance of muscle MRI in the diagnostic evaluation of muscle disease and further expands the known phenotypic heterogeneity of desminopathies.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Músculos Faciais/diagnóstico por imagem , Extremidade Inferior/diagnóstico por imagem , Imageamento por Ressonância Magnética , Debilidade Muscular/diagnóstico por imagem , Distrofias Musculares/diagnóstico por imagem , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto
14.
J Neurol Neurosurg Psychiatry ; 81(3): 310-2, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20185470

RESUMO

Peroxisomal acyl-coenzyme A oxidase deficiency (formerly also called pseudoneonatal adrenoleucodystrophy) is a disorder of peroxisomal fatty acid oxidation with a severe presentation. Most patients present at birth or in early infancy, and the mean age of death was 5 years in a recently published cohort of 22 patients. Brain imaging shows a progressive leucodystrophy. The authors report here the first adult patients (two siblings, 52 and 55 years old) with peroxisomal acyl-coenzyme A oxidase deficiency with a remarkably mild clinical presentation. Magnetic resonance brain imaging revealed profound atrophy of the brainstem and cerebellum.


Assuntos
Tronco Encefálico/patologia , Cerebelo/patologia , Oxirredutases/deficiência , Transtornos Peroxissômicos/diagnóstico , Acil-CoA Oxidase , Atrofia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Exame Neurológico , Oxirredutases/genética , Transtornos Peroxissômicos/genética , Fenótipo
16.
Neuromuscul Disord ; 17(8): 624-30, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17587580

RESUMO

Giant axonal neuropathy (GAN, MIM: 256850) is a devastating autosomal recessive disorder characterized by an early onset severe peripheral neuropathy, varying central nervous system involvement and strikingly frizzly hair. Giant axonal neuropathy is usually caused by mutations in the gigaxonin gene (GAN) but genetic heterogeneity has been demonstrated for a milder variant of this disease. Here, we report ten patients referred to us for molecular genetic diagnosis. All patients had typical clinical signs suggestive of giant axonal neuropathy. In seven affected individuals, we found disease causing mutations in the gigaxonin gene affecting both alleles: two splice-site and four missense mutations, not reported previously. Gigaxonin binds N-terminally to ubiquitin activating enzyme E1 and C-terminally to various microtubule associated proteins causing their ubiquitin mediated degradation. It was shown for a number of gigaxonin mutations that they impede this process leading to accumulation of microtubule associated proteins and there by impairing cellular functions.


Assuntos
Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/patologia , Adolescente , Adulto , Criança , Análise Mutacional de DNA , Éxons/genética , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Doenças do Sistema Nervoso Periférico/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Ubiquitina/metabolismo
17.
Brain ; 129(Pt 2): 411-25, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16364956

RESUMO

Hereditary sensory and autonomic neuropathy type I (HSAN I) is the most frequent type of hereditary neuropathy that primarily affects sensory neurons. The genetic locus for HSAN I has been mapped to chromosome 9q22.1-22.3 and recently the gene was identified as SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1. Sequencing in HSAN I families have previously identified mutations in exons 5, 6 and 13 of this gene. We analysed the SPTLC1 gene for mutations in 8 families with HSAN I, 60 individuals with sporadic sensory neuropathy, 6 HSAN II families, 20 Charcot-Marie-Tooth type I families and 20 families with Charcot-Marie-Tooth type II. Six HSAN I families and a single sporadic neuropathy case had an identical SPTLC1 mutation. No mutations were found in the other groups. Genetic haplotyping across the HSAN I critical region in 5 families and the sporadic case suggested a common founder. Several characteristics, previously not widely recognized were identified, including lack of penetrance of the SPTLC1 mutation in some individuals, variability in age of onset along with an earlier age of onset in younger generations, in some patients surprisingly early and often severe motor involvement and an earlier onset characterized by motor involvement with demyelinating features in males compared to females in 4 families. The sensory findings were often disassociated with prominent pain and temperature loss. Neurophysiology mainly showed a sensory axonal neuropathy but in many individuals there was electrical evidence of demyelination. Sural nerve biopsies from six affected individuals and the post-mortem findings in 1 case showed mainly axonal loss. This in depth study on the phenotype of HSAN I in 6 families and a single sporadic case with a common founder identifies a number of poorly recognized features in this disorder and highlights the clinical heterogeneity both within and between families suggesting the influence of other genetic and acquired factors.


Assuntos
Aciltransferases/genética , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Adulto , Idade de Início , Idoso , Axônios/patologia , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Análise Mutacional de DNA , Eletrofisiologia , Feminino , Haplótipos , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Condução Nervosa , Neurônios Aferentes , Linhagem , Penetrância , Serina C-Palmitoiltransferase , Fatores Sexuais , Nervo Sural/patologia
18.
J Neurol ; 264(5): 979-988, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28397002

RESUMO

Myotonic dystrophy type 1 (DM1) is the most frequent muscular dystrophy worldwide with complex, multi-systemic, and progressively worsening symptoms. There is currently no treatment for this inherited disorder and research can be challenging due to the rarity and variability of the disease. The UK Myotonic Dystrophy Patient Registry is a patient self-enrolling online database collecting clinical and genetic information. For this cross-sectional "snapshot" analysis, 556 patients with a confirmed diagnosis of DM1 registered between May 2012 and July 2016 were included. An almost even distribution was seen between genders and a broad range of ages was present from 8 months to 78 years, with the largest proportion between 30 and 59 years. The two most frequent symptoms were fatigue and myotonia, reported by 79 and 78% of patients, respectively. The severity of myotonia correlated with the severity of fatigue as well as mobility impairment, and dysphagia occurred mostly in patients also reporting myotonia. Men reported significantly more frequent severe myotonia, whereas severe fatigue was more frequently reported by women. Cardiac abnormalities were diagnosed in 48% of patients and more than one-third of them needed a cardiac implant. Fifteen percent of patients used a non-invasive ventilation and cataracts were removed in 26% of patients, 65% of which before the age of 50 years. The registry's primary aim was to facilitate and accelerate clinical research. However, these data also allow us to formulate questions for hypothesis-driven research that may lead to improvements in care and treatment.


Assuntos
Fadiga/etiologia , Distrofia Miotônica/epidemiologia , Sistema de Registros , Adolescente , Adulto , Distribuição por Idade , Idoso , Arritmias Cardíacas/epidemiologia , Catarata/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Eletrocardiografia , Fadiga/epidemiologia , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Transtornos dos Movimentos/epidemiologia , Transtornos dos Movimentos/etiologia , Distrofia Miotônica/diagnóstico , Distrofia Miotônica/genética , Distrofia Miotônica/terapia , Miotonina Proteína Quinase/genética , Fatores Sexuais , Expansão das Repetições de Trinucleotídeos/genética , Reino Unido/epidemiologia , Adulto Jovem
19.
JAMA Neurol ; 73(12): 1433-1439, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27749956

RESUMO

IMPORTANCE: Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a frequent cause of adult-onset leukodystrophy known to be caused by autosomal dominant mutations in the CSF1R (colony-stimulating factor 1) gene. The discovery that CSF1R mutations cause ALSP led to more accurate prognosis and genetic counseling for these patients in addition to increased interest in microglia as a target in neurodegeneration. However, it has been known since the discovery of the CSF1R gene that there are patients with typical clinical and radiologic evidence of ALSP who do not carry pathogenic CSF1R mutations. These patients include those in whom the pathognomonic features of axonal spheroids and pigmented microglia have been found. Achieving a genetic diagnosis in these patients is important to our understanding of this disorder. OBJECTIVE: To genetically characterize a group of patients with typical features of ALSP who do not carry CSF1R mutations. DESIGN, SETTINGS, AND PARTICIPANTS: In this case series study, 5 patients from 4 families were identified with clinical, radiologic, or pathologic features of ALSP in whom CSF1R mutations had been excluded previously by sequencing. Data were collected between May 2014 and September 2015 and analyzed between September 2015 and February 2016. MAIN OUTCOMES AND MEASURES: Focused exome sequencing was used to identify candidate variants. Family studies, long-range polymerase chain reaction with cloning, and complementary DNA sequencing were used to confirm pathogenicity. RESULTS: Of these 5 patients, 4 were men (80%); mean age at onset of ALSP was 29 years (range, 15-44 years). Biallelic mutations in the alanyl-transfer (t)RNA synthetase 2 (AARS2) gene were found in all 5 patients. Frameshifting and splice site mutations were common, found in 4 of 5 patients, and sequencing of complementary DNA from affected patients confirmed that the variants were loss of function. All patients presented in adulthood with prominent cognitive, neuropsychiatric, and upper motor neuron signs. Magnetic resonance imaging in all patients demonstrated a symmetric leukoencephalopathy with punctate regions of restricted diffusion, typical of ALSP. In 1 patient, brain biopsy demonstrated axonal spheroids and pigmented microglia, which are the pathognomonic signs of ALSP. CONCLUSIONS AND RELEVANCE: This work indicates that mutations in the tRNA synthetase AARS2 gene cause a recessive form of ALSP. The CSF1R and AARS2 proteins have different cellular functions but overlap in a final common pathway of neurodegeneration. This work points to novel targets for research and will lead to improved diagnostic rates in patients with adult-onset leukoencephalopathy.


Assuntos
Alanina-tRNA Ligase/genética , Leucoencefalopatias/diagnóstico por imagem , Leucoencefalopatias/genética , Leucoencefalopatias/fisiopatologia , Microglia/patologia , Adolescente , Adulto , Exoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Análise de Sequência de DNA , Adulto Jovem
20.
Br J Hosp Med (Lond) ; 76(10): 576-82, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457938

RESUMO

Patients with muscle disease present not only to neurologists, but also to rheumatologists and general physicians. This article provides a framework of how to approach patients with suspected muscle disease, and reviews the clinical features of the most frequently encountered acquired and genetic conditions in adult practice.


Assuntos
Distrofias Musculares/diagnóstico , Miosite/diagnóstico , Adulto , Humanos , Doenças Musculares/diagnóstico , Doenças Musculares/terapia , Distrofias Musculares/terapia , Miosite/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa