Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 109(22): 8600-5, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586097

RESUMO

There is general agreement that competition for resources results in a tradeoff between plant mass, M, and density, but the mathematical form of the resulting thinning relationship and the mechanisms that generate it are debated. Here, we evaluate two complementary models, one based on the space-filling properties of canopy geometry and the other on the metabolic basis of resource use. For densely packed stands, both models predict that density scales as M(-3/4), energy use as M(0), and total biomass as M(1/4). Compilation and analysis of data from 183 populations of herbaceous crop species, 473 stands of managed tree plantations, and 13 populations of bamboo gave four major results: (i) At low initial planting densities, crops grew at similar rates, did not come into contact, and attained similar mature sizes; (ii) at higher initial densities, crops grew until neighboring plants came into contact, growth ceased as a result of competition for limited resources, and a tradeoff between density and size resulted in critical density scaling as M(-0.78), total resource use as M(-0.02), and total biomass as M(0.22); (iii) these scaling exponents are very close to the predicted values of M(-3/4), M(0), and M(1/4), respectively, and significantly different from the exponents suggested by some earlier studies; and (iv) our data extend previously documented scaling relationships for trees in natural forests to small herbaceous annual crops. These results provide a quantitative, predictive framework with important implications for the basic and applied plant sciences.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Modelos Biológicos , Desenvolvimento Vegetal , Árvores/crescimento & desenvolvimento , Algoritmos , Biomassa , Ecossistema , Densidade Demográfica
2.
Ecol Eng ; 65: 24-32, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24882946

RESUMO

The current economic paradigm, which is based on increasing human population, economic development, and standard of living, is no longer compatible with the biophysical limits of the finite Earth. Failure to recover from the economic crash of 2008 is not due just to inadequate fiscal and monetary policies. The continuing global crisis is also due to scarcity of critical resources. Our macroecological studies highlight the role in the economy of energy and natural resources: oil, gas, water, arable land, metals, rare earths, fertilizers, fisheries, and wood. As the modern industrial technological-informational economy expanded in recent decades, it grew by consuming the Earth's natural resources at unsustainable rates. Correlations between per capita GDP and per capita consumption of energy and other resources across nations and over time demonstrate how economic growth and development depend on "nature's capital". Decades-long trends of decreasing per capita consumption of multiple important commodities indicate that overexploitation has created an unsustainable bubble of population and economy.

3.
Am J Bot ; 99(3): 508-16, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22371857

RESUMO

PREMISE OF THE STUDY: An overarching but vigorously debated plant model proposed by the West, Brown, Enquist (WBE) theory predicts the scaling relationships for numerous botanical phenomena. However, few studies have evaluated this model's basic assumptions, one of which is that natural selection has resulted in hierarchal networks that minimize the energy required to distribute nutrients internally and have thus produced highly efficient organisms. METHODS: If these core assumptions are correct, an "idealized" plant complying with all of the scaling relationships emerging from the WBE plant model should rapidly outcompete other plants, even those that differ slightly from it. To test this reasoning, a computer model was used to simulate competition between an idealized WBE plant, a generic "average" angiosperm (GA), and one of seven variants of the idealized WBE plant, each being similar to the GA in one of the GA's scaling parameters. KEY RESULTS: Replicate simulations show that the idealized WBE plant rapidly outcompetes all other plants under light-shade and open-field conditions. However, changing only one of the WBE's scaling parameters results in death or in the coexistence of WBE and GA plants. CONCLUSIONS: These simulations support a core assumption of the WBE plant model and suggest why this idealized plant has not evolved.


Assuntos
Simulação por Computador , Modelos Biológicos , Desenvolvimento Vegetal/fisiologia , Plantas/metabolismo , Evolução Biológica , Luz , Plantas/genética
4.
Trends Ecol Evol ; 28(3): 127-30, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23290501

RESUMO

Two interacting forces influence all populations: the Malthusian dynamic of exponential growth until resource limits are reached, and the Darwinian dynamic of innovation and adaptation to circumvent these limits through biological and/or cultural evolution. The specific manifestations of these forces in modern human society provide an important context for determining how humans can establish a sustainable relationship with the finite Earth.


Assuntos
Civilização , Dinâmica Populacional , Crescimento Demográfico , Adaptação Fisiológica , Evolução Biológica , Evolução Cultural , Humanos
5.
PLoS One ; 7(3): e33927, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22457800

RESUMO

Individual trees have been shown to exhibit strong relationships between DBH, height and volume. Often such studies are cited as justification for forest volume or standing biomass estimation through remote sensing. With resolution of common satellite remote sensing systems generally too low to resolve individuals, and a need for larger coverage, these systems rely on descriptive heights, which account for tree collections in forests. For remote sensing and allometric applications, this height is not entirely understood in terms of its location. Here, a forest growth model (SERA) analyzes forest canopy height relationships with forest wood volume. Maximum height, mean, H100, and Lorey's height are examined for variability under plant number density, resource and species. Our findings, shown to be allometrically consistent with empirical measurements for forested communities world-wide, are analyzed for implications to forest remote sensing techniques such as LiDAR and RADAR. Traditional forestry measures of maximum height, and to a lesser extent H100 and Lorey's, exhibit little consistent correlation with forest volume across modeled conditions. The implication is that using forest height to infer volume or biomass from remote sensing requires species and community behavioral information to infer accurate estimates using height alone. SERA predicts mean height to provide the most consistent relationship with volume of the height classifications studied and overall across forest variations. This prediction agrees with empirical data collected from conifer and angiosperm forests with plant densities ranging between 10²-106 plants/hectare and heights 6-49 m. Height classifications investigated are potentially linked to radar scattering centers with implications for allometry. These findings may be used to advance forest biomass estimation accuracy through remote sensing. Furthermore, Lorey's height with its specific relationship to remote sensing physics is recommended as a more universal indicator of volume when using remote sensing than achieved using either maximum height or H100.


Assuntos
Árvores , Biodiversidade , Biomassa
6.
Am J Bot ; 96(8): 1430-44, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21628290

RESUMO

A spatially explicit, reiterative algorithm (SERA) is presented and used to predict multiple aspects of plant population and community dynamics. Using simple physical principles and empirically derived relationships, SERA provides an analytical venue to test alternative hypotheses about individual functional traits governing ecological or evolutionary processes at the population or community level of complexity. Our analyses show that, as a result of competition for light and space, individual-level features scale up to produce species ensemble properties such as the scaling of self-thinning, size-dependent mortality, realistic size-frequency distributions, and a broad spectrum of empirically observed relationships for the species examined. SERA also predicts the competitive exclusion of conifers by angiosperms and the age at which reproductive maturity is achieved by different species. SERA serves as a null hypothesis by demonstrating that biologically complex phenomena, including widely observed scaling relationships at the species-ensemble level, can emerge from the operation of simple and transparent "rules" governing competition for space and light.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa