Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Mol Cell ; 82(10): 1821-1835.e6, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35381197

RESUMO

GLS1 orchestrates glutaminolysis and promotes cell proliferation when glutamine is abundant by regenerating TCA cycle intermediates and supporting redox homeostasis. CB-839, an inhibitor of GLS1, is currently under clinical investigation for a variety of cancer types. Here, we show that GLS1 facilitates apoptosis when glutamine is deprived. Mechanistically, the absence of exogenous glutamine sufficiently reduces glutamate levels to convert dimeric GLS1 to a self-assembled, extremely low-Km filamentous polymer. GLS1 filaments possess an enhanced catalytic activity, which further depletes intracellular glutamine. Functionally, filamentous GLS1-dependent glutamine scarcity leads to inadequate synthesis of asparagine and mitogenome-encoded proteins, resulting in ROS-induced apoptosis that can be rescued by asparagine supplementation. Physiologically, we observed GLS1 filaments in solid tumors and validated the tumor-suppressive role of constitutively active, filamentous GLS1 mutants K320A and S482C in xenograft models. Our results change our understanding of GLS1 in cancer metabolism and suggest the therapeutic potential of promoting GLS1 filament formation.


Assuntos
Glutaminase , Glutamina , Apoptose , Asparagina/genética , Glutaminase/genética , Glutaminase/metabolismo , Glutamina/metabolismo , Humanos , Espécies Reativas de Oxigênio
2.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716264

RESUMO

Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.


Assuntos
Parede Celular/fisiologia , Peptidoglicano/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Homeostase , Meticilina/farmacologia , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Ácidos Teicoicos/metabolismo , Vancomicina/farmacologia
3.
Mol Psychiatry ; 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338313

RESUMO

Astrocyte aerobic glycolysis provides vital trophic support for central nervous system neurons. However, whether and how astrocytic metabolic dysregulation contributes to neuronal dysfunction in intellectual disability (ID) remain unclear. Here, we demonstrate a causal role for an ID-associated SNX27 mutation (R198W) in cognitive deficits involving reshaping astrocytic metabolism. We generated SNX27R196W (equivalent to human R198W) knock-in mice and found that they displayed deficits in synaptic function and learning behaviors. SNX27R196W resulted in attenuated astrocytic glucose uptake via GLUT1, leading to reduced lactate production and a switch from homeostatic to reactive astrocytes. Importantly, lactate supplementation or a ketogenic diet restored neuronal oxidative phosphorylation and reversed cognitive deficits in SNX27R196W mice. In summary, we illustrate a key role for astrocytic SNX27 in maintaining glucose supply and glycolysis and reveal that altered astrocytic metabolism disrupts the astrocyte-neuron interaction, which contributes to ID. Our work also suggests a feasible strategy for treating ID by restoring astrocytic metabolic function.

4.
Bioinformatics ; 37(17): 2682-2690, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-33677505

RESUMO

MOTIVATION: Transcriptional surges generated by two-component systems (TCSs) have been observed experimentally in various bacteria. Suppression of the transcriptional surge may reduce the activity, virulence and drug resistance of bacteria. In order to investigate the general mechanisms, we use a PhoP/PhoQ TCS as a model system to derive a comprehensive mathematical modeling that governs the surge. PhoP is a response regulator, which serves as a transcription factor under a phosphorylation-dependent modulation by PhoQ, a histidine kinase. RESULTS: Our model reveals two major signaling pathways to modulate the phosphorylated PhoP (P-PhoP) level, one of which promotes the generation of P-PhoP, while the other depresses the level of P-PhoP. The competition between the P-PhoP-promoting and the P-PhoP-depressing pathways determines the generation of the P-PhoP surge. Furthermore, besides PhoQ, PhoP is also a bifunctional modulator that contributes to the dynamic control of P-PhoP state, leading to a biphasic regulation of the surge by the gene feedback loop. In summary, the mechanisms derived from the PhoP/PhoQ system for the transcriptional surges provide a better understanding on such a sophisticated signal transduction system and aid to develop new antimicrobial strategies targeting TCSs. AVAILABILITY AND IMPLEMENTATION: https://github.com/jianweishuai/TCS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
J Basic Microbiol ; 59(9): 950-959, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31339578

RESUMO

Two-component signal transduction systems (TCSs) play a major role in adaption and survival of microorganisms in a dynamic and sometimes dangerous environment. YycFG is an essential TCS for many Gram-positive bacteria, such as Bacillus subtilis, which regulates many important biological processes. However, its functional essentiality remains largely unknown. Here, we report several YycFG interacting proteins through coimmunoprecipitation (Co-IP) and mass spectrometry (MS) analyses. We engineered the B. subtilis genome by a knock-in approach to express YycG with a C-terminal Flag and YycF with an N-terminal HA tag. Immunoprecipitated fractions using anti-Flag or anti-HA agarose were subjected to MS analyses. A total of 41 YycG interacting proteins and four YycF interacting proteins were identified, most of which are involved in cellular metabolic processes, including cell wall synthesis and modification. The interactions of YycG with AsnB and FabL, as examples, were further validated in vitro. This study provided a clue that YycFG may be directly involved in regulation of bacterial central metabolic pathways.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Histidina Quinase/metabolismo , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Técnicas de Introdução de Genes , Redes Reguladoras de Genes , Histidina Quinase/genética , Ligação Proteica , Transdução de Sinais/genética
6.
J Biol Chem ; 291(27): 14363-14372, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27143356

RESUMO

The adenovirus early region 1A (E1A) oncoprotein hijacks host cells via direct interactions with many key cellular proteins, such as KAT2B, also known as PCAF (p300/CBP associated factor). E1A binds the histone acetyltransferase (HAT) domain of KAT2B to repress its transcriptional activation. However, the molecular mechanism by which E1A inhibits the HAT activity is not known. Here we demonstrate that a short and relatively conserved N-terminal motif (cNM) in the intrinsically disordered E1A protein is crucial for KAT2B interaction, and inhibits its HAT activity through a direct competition with acetyl-CoA, but not its substrate histone H3. Molecular modeling together with a series of mutagenesis experiments suggests that the major helix of E1A cNM binds to a surface of the acetyl-CoA pocket of the KAT2B HAT domain. Moreover, transient expression of the cNM peptide is sufficient to inhibit KAT2B-specific H3 acetylation H3K14ac in vivo Together, our data define an essential motif cNM in N-terminal E1A as an acetyl-CoA entry blocker that directly associates with the entrance of acetyl-CoA binding pocket to block the HAT domain access to its cofactor.


Assuntos
Proteínas E1A de Adenovirus/fisiologia , Lisina Acetiltransferases/antagonistas & inibidores , Acetilação , Proteínas E1A de Adenovirus/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Homologia de Sequência de Aminoácidos
7.
Microbiology (Reading) ; 163(11): 1637-1640, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29034863

RESUMO

Genus Comamonas is a group of bacteria that are able to degrade a variety of environmental waste. Comamonas aquatica CJG (C. aquatica) in this genus is able to absorb low-density lipoprotein but not high-density lipoprotein of human serum. Using 1H and 13C NMR spectroscopy, we found that the O-polysaccharide (O-antigen) of this bacterium is comprised of a disaccharide repeat (O-unit) of d-glucose and 2-O-acetyl-l-rhamnose, which is shared by Serratia marcescens O6. The O-antigen gene cluster of C. aquatica, which is located between coaX and tnp4 genes, contains rhamnose synthesis genes, glycosyl and acetyl transferase genes, and ATP-binding cassette transporter genes, and therefore is consistent with the O-antigen structure determined here.


Assuntos
Comamonas/genética , Família Multigênica/genética , Antígenos O/química , Antígenos O/genética , Proteínas de Bactérias/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Comamonas/química , Comamonas/enzimologia , Dissacarídeos/análise , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glucose , Antígenos O/isolamento & purificação , Estrutura Secundária de Proteína , Espectroscopia de Prótons por Ressonância Magnética , Ramnose
8.
PLoS Biol ; 11(2): e1001493, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468592

RESUMO

Two-component systems (TCSs) are important for the adaptation and survival of bacteria and fungi under stress conditions. A TCS is often composed of a membrane-bound sensor histidine kinase (SK) and a response regulator (RR), which are relayed through sequential phosphorylation steps. However, the mechanism for how an SK is switched on in response to environmental stimuli remains obscure. Here, we report the crystal structure of a complete cytoplasmic portion of an SK, VicK from Streptococcus mutans. The overall structure of VicK is a long-rod dimer that anchors four connected domains: HAMP, Per-ARNT-SIM (PAS), DHp, and catalytic and ATP binding domain (CA). The HAMP, a signal transducer, and the PAS domain, major sensor, adopt canonical folds with dyad symmetry. In contrast, the dimer of the DHp and CA domains is asymmetric because of different helical bends in the DHp domain and spatial positions of the CA domains. Moreover, a conserved proline, which is adjacent to the phosphoryl acceptor histidine, contributes to helical bending, which is essential for the autokinase and phosphatase activities. Together, the elegant architecture of VicK with a signal transducer and sensor domain suggests a model where DHp helical bending and a CA swing movement are likely coordinated for autokinase activation.


Assuntos
Proteínas de Bactérias/química , Proteínas Quinases/química , Cristalografia por Raios X , Histidina Quinase , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Streptococcus mutans/metabolismo
9.
J Biol Chem ; 289(33): 23154-23167, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24939842

RESUMO

Transcription elongation has been recognized as a rate-limiting step for the expression of signal-inducible genes. Through recruitment of positive transcription elongation factor P-TEFb, the bromodomain-containing protein BRD4 plays critical roles in regulating the transcription elongation of a vast array of inducible genes that are important for multiple cellular processes. The diverse biological roles of BRD4 have been proposed to rely on its functional transition between chromatin targeting and transcription regulation. The signaling pathways and the molecular mechanism for regulating this transition process, however, are largely unknown. Here, we report a novel role of phosphorylated Ser(10) of histone H3 (H3S10ph) in governing the functional transition of BRD4. We identified that the acetylated lysines 5 and 8 of nucleosomal histone H4 (H4K5ac/K8ac) is the BRD4 binding site, and the protein phosphatase PP1α and class I histone deacetylase (HDAC1/2/3) signaling pathways are essential for the stress-induced BRD4 release from chromatin. In the unstressed state, phosphorylated H3S10 prevents the deacetylation of nucleosomal H4K5ac/K8ac by HDAC1/2/3, thereby locking up the majority of BRD4 onto chromatin. Upon stress, PP1α-mediated dephosphorylation of H3S10ph allows the deacetylation of nucleosomal H4K5ac/K8ac by HDAC1/2/3, thereby leading to the release of chromatin-bound BRD4 for subsequent recruitment of P-TEFb to enhance the expression of inducible genes. Therefore, our study revealed a novel mechanism that the histone cross-talk between H3S10ph and H4K5ac/K8ac connects PP1α and HDACs to govern the functional transition of BRD4. Combined with previous studies on the regulation of P-TEFb activation, the intricate signaling network for the tight control of transcription elongation is established.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Histona Desacetilases/biossíntese , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteína Fosfatase 1/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Acetilação , Proteínas de Ciclo Celular , Cromatina/genética , Cromatina/metabolismo , Células HEK293 , Células HeLa , Histona Desacetilases/genética , Histonas/genética , Humanos , Proteínas Nucleares/genética , Fosforilação/fisiologia , Fator B de Elongação Transcricional Positiva/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Proteína Fosfatase 1/genética , Fatores de Transcrição/genética
10.
BMC Struct Biol ; 14: 2, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24423233

RESUMO

BACKGROUND: p300/CBP associating factor (PCAF, also known as KAT2B for lysine acetyltransferase 2B) is a catalytic subunit of megadalton metazoan complex ATAC (Ada-Two-A containing complex) for acetylation of histones. However, relatively little is known about the regulation of the enzymatic activity of PCAF. RESULTS: Here we present two dimeric structures of the PCAF acetyltransferase (HAT) domain. These dimerizations are mediated by either four-helical hydrophobic interactions or a ß-sheet extension. Our chemical cross-linking experiments in combined with site-directed mutagenesis demonstrated that the PCAF HAT domain mainly forms a dimer in solution through one of the observed interfaces. The results of maltose binding protein (MBP)-pulldown, co-immunoprecipitation and multiangle static light scattering experiments further indicated that PCAF dimeric state is detectable and may possibly exist in vivo. CONCLUSIONS: Taken together, our structural and biochemical studies indicate that PCAF appears to be a dimer in its functional ATAC complex.


Assuntos
Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo , Domínio Catalítico , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Transcrição de p300-CBP/genética
11.
J Exp Bot ; 65(1): 223-34, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24187420

RESUMO

Production per amount of water used (water use efficiency, WUE) is closely correlated with drought tolerance. Although stomatal aperture can regulate WUE, the underlying molecular mechanisms are still unclear. Previous reports revealed that stomatal closure was inhibited in the calcium-sensing receptor (CAS) antisense line of Arabidopsis (CASas). Here it is shown that decreased drought tolerance and WUE of CASas was associated with higher stomatal conductance due to improper regulation of stomatal aperture, rather than any change of stomatal density. CASas plants also had a lower CO2 assimilation rate that was attributed to a lower photosynthetic electron transport rate, leading to higher chlorophyll fluorescence. Gene co-expression combined with analyses of chlorophyll content and transcription levels of photosynthesis-related genes indicate that CAS is involved in the formation of the photosynthetic electron transport system. These data suggest that CAS regulates transpiration and optimizes photosynthesis by playing important roles in stomatal movement and formation of photosynthetic electron transport, thereby regulating WUE and drought tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas , Água/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Desidratação , Secas , Transporte de Elétrons , Modelos Biológicos , Fotossíntese/fisiologia , Epiderme Vegetal/genética , Epiderme Vegetal/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Fatores de Tempo
12.
Nucleic Acids Res ; 40(12): 5378-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22396528

RESUMO

Enzymes that modify the epigenetic status of cells provide attractive targets for therapy in various diseases. The therapeutic development of epigenetic modulators, however, has been largely limited to direct targeting of catalytic active site conserved across multiple members of an enzyme family, which complicates mechanistic studies and drug development. Class IIa histone deacetylases (HDACs) are a group of epigenetic enzymes that depends on interaction with Myocyte Enhancer Factor-2 (MEF2) for their recruitment to specific genomic loci. Targeting this interaction presents an alternative approach to inhibiting this class of HDACs. We have used structural and functional approaches to identify and characterize a group of small molecules that indirectly target class IIa HDACs by blocking their interaction with MEF2 on DNA.Weused X-ray crystallography and (19)F NMRto show that these compounds directly bind to MEF2. We have also shown that the small molecules blocked the recruitment of class IIa HDACs to MEF2-targeted genes to enhance the expression of those targets. These compounds can be used as tools to study MEF2 and class IIa HDACs in vivo and as leads for drug development.


Assuntos
Anilidas/química , Anilidas/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Fatores de Regulação Miogênica/antagonistas & inibidores , Animais , Sítios de Ligação , Linhagem Celular , DNA/química , Células HeLa , Histona Desacetilases/análise , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Fatores de Transcrição MEF2 , Modelos Moleculares , Fatores de Regulação Miogênica/química
13.
Nucleic Acids Res ; 39(10): 4464-74, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21278418

RESUMO

Transcription co-activators CBP and p300 are recruited by sequence-specific transcription factors to specific genomic loci to control gene expression. A highly conserved domain in CBP/p300, the TAZ2 domain, mediates direct interaction with a variety of transcription factors including the myocyte enhancer factor 2 (MEF2). Here we report the crystal structure of a ternary complex of the p300 TAZ2 domain bound to MEF2 on DNA at 2.2Å resolution. The structure reveals three MEF2:DNA complexes binding to different sites of the TAZ2 domain. Using structure-guided mutations and a mammalian two-hybrid assay, we show that all three interfaces contribute to the binding of MEF2 to p300, suggesting that p300 may use one of the three interfaces to interact with MEF2 in different cellular contexts and that one p300 can bind three MEF2:DNA complexes simultaneously. These studies, together with previously characterized TAZ2 complexes bound to different transcription factors, demonstrate the potency and versatility of TAZ2 in protein-protein interactions. Our results also support a model wherein p300 promotes the assembly of a higher-order enhanceosome by simultaneous interactions with multiple DNA-bound transcription factors.


Assuntos
DNA/química , Proteínas de Domínio MADS/química , Fatores de Regulação Miogênica/química , Fatores de Transcrição de p300-CBP/química , Sítios de Ligação , Humanos , Fatores de Transcrição MEF2 , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas
14.
Nucleic Acids Res ; 39(22): 9592-604, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21890894

RESUMO

Bromodomain-containing protein Brd4 is shown to persistently associate with chromosomes during mitosis for transmitting epigenetic memory across cell divisions. During interphase, Brd4 also plays a key role in regulating the transcription of signal-inducible genes by recruiting positive transcription elongation factor b (P-TEFb) to promoters. How the chromatin-bound Brd4 transits into a transcriptional regulation mode in response to stimulation, however, is largely unknown. Here, by analyzing the dynamics of Brd4 during ultraviolet or hexamethylene bisacetamide treatment, we show that the signal-induced release of chromatin-bound Brd4 is essential for its functional transition. In untreated cells, almost all Brd4 is observed in association with interphase chromatin. Upon treatment, Brd4 is released from chromatin, mostly due to signal-triggered deacetylation of nucleosomal histone H4 at acetylated-lysine 5/8 (H4K5ac/K8ac). Through selective association with the transcriptional active form of P-TEFb that has been liberated from the inactive multi-subunit complex in response to treatment, the released Brd4 mediates the recruitment of this active P-TEFb to promoter, which enhances transcription at the stage of elongation. Thus, through signal-induced release from chromatin and selective association with the active form of P-TEFb, the chromatin-bound Brd4 switches its role to mediate the recruitment of P-TEFb for regulating the transcriptional elongation of signal-inducible genes.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Acetamidas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular , Cromatina/efeitos dos fármacos , Cromatina/efeitos da radiação , Quinase 9 Dependente de Ciclina/metabolismo , HIV-1/genética , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Interfase/genética , Modelos Genéticos , Proteínas Nucleares/genética , Fator B de Elongação Transcricional Positiva/metabolismo , Deleção de Sequência , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica/efeitos dos fármacos , Raios Ultravioleta
15.
Front Aging Neurosci ; 15: 1169211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529008

RESUMO

Introduction: Damage to retinal pigment epithelium (RPE) cells caused by oxidative stress is closely related to the pathogenesis of several blinding retinal diseases, such as age-related macular degeneration (AMD), retinitis pigmentosa, and other inherited retinal degenerative conditions. However, the mechanisms of this process are poorly understood. Hence, the goal of this study was to investigate hydrogen peroxide (H2O2)-induced oxidative damage and protective role of peroxiredoxin 6 (PRDX6) protein via EGFR/ERK signaling pathway in RPE cells. Methods: Cells from a human RPE cell line (ARPE-19 cells) were treated with H2O2, and then cell viability was assessed using the methyl thiazolyl tetrazolium assay. Cell death and reactive oxygen species (ROS) were detected by flow cytometry. The levels of PRDX6, epidermal growth factor receptor (EGFR), P38 mitogen-activated protein kinase (P38MAPK), c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK) were detected by Western blot assay. PRDX6 and EGFR were also detected via immunofluorescence staining. Results: Our results show that H2O2 inhibited cell viability, induced cell death, and increased ROS levels in ARPE-19 cells. It was also found that H2O2 decreased the levels of PRDX6, EGFR, and phosphorylated ERK but increased the levels of phosphorylated P38MAPK and JNK. PRDX6 overexpression was found to attenuate H2O2-induced inhibition of cell viability and increased cell death and ROS production in ARPE-19 cells. PRDX6 overexpression also increased the expression of EGFR and alleviated the H2O2-induced decrease in EGFR and phosphorylated ERK. Moreover, inhibition of epidermal growth factor-induced EGFR and ERK signaling in oxidative stress was partially blocked by PRDX6 overexpression. Discussion: Our findings indicate that PRDX6 overexpression protects RPE cells from oxidative stress damage caused by decreasing ROS production and partially blocking the inhibition of the EGFR/ERK signaling pathway induced by oxidative stress. Therefore, PRDX6 shows promise as a therapeutic target for the prevention of RPE cell damage caused by oxidative stress associated with retinal diseases.

16.
J Exp Bot ; 63(1): 177-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21940718

RESUMO

The Arabidopsis calcium-sensing receptor CAS is a crucial regulator of extracellular calcium-induced stomatal closure. Free cytosolic Ca(2+) (Ca(2+)(i)) increases in response to a high extracellular calcium (Ca(2+)(o)) level through a CAS signalling pathway and finally leads to stomatal closure. Multidisciplinary approaches including histochemical, pharmacological, fluorescent, electrochemical, and molecular biological methods were used to discuss the relationship of hydrogen peroxide (H(2)O(2)) and nitric oxide (NO) signalling in the CAS signalling pathway in guard cells in response to Ca(2+)(o). Here it is shown that Ca(2+)(o) could induce H(2)O(2) and NO production from guard cells but only H(2)O(2) from chloroplasts, leading to stomatal closure. In addition, the CASas mutant, the atrbohD/F double mutant, and the Atnoa1 mutant were all insensitive to Ca(2+)(o)-stimulated stomatal closure, as well as H(2)O(2) and NO elevation in the case of CASas. Furthermore, it was found that the antioxidant system might function as a mediator in Ca(2+)(o) and H(2)O(2) signalling in guard cells. The results suggest a hypothetical model whereby Ca(2+)(o) induces H(2)O(2) and NO accumulation in guard cells through the CAS signalling pathway, which further triggers Ca(2+)(i) transients and finally stomatal closure. The possible cross-talk of Ca(2+)(o) and abscisic acid signalling as well as the antioxidant system are discussed.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Peróxido de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Estômatos de Plantas/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Arabidopsis/citologia , Arabidopsis/enzimologia , Espaço Extracelular/metabolismo , Microscopia de Fluorescência , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Espectrometria de Fluorescência
17.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1110-1119, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048151

RESUMO

The pathogen Legionella pneumophila, which is the causative agent of Legionnaires' disease, secrets hundreds of effectors into host cells via its Dot/Icm secretion system to subvert host-cell pathways during pathogenesis. VipF, a conserved core effector among Legionella species, is a putative acetyltransferase, but its structure and catalytic mechanism remain unknown. Here, three crystal structures of VipF in complex with its cofactor acetyl-CoA and/or a substrate are reported. The two GNAT-like domains of VipF are connected as two wings by two ß-strands to form a U-shape. Both domains bind acetyl-CoA or CoA, but only in the C-terminal domain does the molecule extend to the bottom of the U-shaped groove as required for an active transferase reaction; the molecule in the N-terminal domain folds back on itself. Interestingly, when chloramphenicol, a putative substrate, binds in the pocket of the central U-shaped groove adjacent to the N-terminal domain, VipF remains in an open conformation. Moreover, mutations in the central U-shaped groove, including Glu129 and Asp251, largely impaired the acetyltransferase activity of VipF, suggesting a unique enzymatic mechanism for the Legionella effector VipF.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Acetilcoenzima A/metabolismo , Acetilação , Acetiltransferases , Proteínas de Bactérias/química , Legionella/metabolismo , Legionella pneumophila/química , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Doença dos Legionários/genética
18.
Sci Adv ; 8(50): eadd7945, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36525490

RESUMO

The intracellular bacterial pathogen Legionella pneumophila uses hundreds of effector proteins to manipulate multiple processes of the host cells to establish a replicative niche known as Legionella-containing vacuole (LCV). Biogenesis of the LCV has been known to depend on host small guanosine triphosphatases (GTPases), but whether bacterial effector GTPases are also involved remains unknown. Here, we show that an ankyrin repeat containing effector LegA15 localizes directly in host lipid droplets (LDs), leading to Golgi apparatus fragmentation of the host cells by hijacking the host vesicular transport factor p115. LegA15 is a GTPase with a unique catalytic mechanism, unlike any eukaryotic small GTPases. Moreover, the effector LegA15 co-opts p115 to modulate homeostasis of the host LDs in its GTPase-dependent manner. Together, our data reveal that an atypical GTPase effector regulates the host LDs through impeding the vesicle secretion system of the host cells for intracellular life cycle of Legionella.


Assuntos
Legionella , Legionella/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno
19.
Commun Biol ; 5(1): 1228, 2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369270

RESUMO

Bacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.


Assuntos
Peptidoglicano , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Membrana/metabolismo , Divisão Celular , Parede Celular/metabolismo
20.
Front Microbiol ; 13: 820089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558126

RESUMO

In Streptococcus mutans, we find that the histidine kinase WalK possesses the longest C-terminal tail (CTT) among all 14 TCSs, and this tail plays a key role in the interaction of WalK with its response regulator WalR. We demonstrate that the intrinsically disordered CTT is characterized by a conserved tryptophan residue surrounded by acidic amino acids. Mutation in the tryptophan not only disrupts the stable interaction, but also impairs the efficient phosphotransferase and phosphatase activities of WalRK. In addition, the tryptophan is important for WalK to compete with DNA containing a WalR binding motif for the WalR interaction. We further show that the tryptophan is important for in vivo transcriptional regulation and bacterial biofilm formation by S. mutans. Moreover, Staphylococcus aureus WalK also has a characteristic CTT, albeit relatively shorter, with a conserved W-acidic motif, that is required for the WalRK interaction in vitro. Together, these data reveal that the W-acidic motif of WalK is indispensable for its interaction with WalR, thereby playing a key role in the WalRK-dependent signal transduction, transcriptional regulation and biofilm formation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa