Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Angew Chem Int Ed Engl ; : e202410431, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987230

RESUMO

A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.

2.
J Am Chem Soc ; 143(33): 13259-13265, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34387996

RESUMO

Research on chiral selection and recognition not only is of fundamental importance in resolving the origin of biological homochirality, but also is instructive in the fabrication of controlled molecular organization in supramolecular systems to modulate their chirality-related functional properties. Here we report an enantioselective assembly process between a chiral energy donor and two enantiomeric energy acceptors, which further results in chirality-controlled energy transfer and enantioselective triplet-triplet annihilation upconversion (TTA-UC). It is found that the chiral energy donor Pd(II) octaethylporphyrin derivative PdOEP-LG12 (RD) can selectively coassemble with the chiral energy acceptor LGAn (RA) with the same chiral scaffold but tends to form segregation with the energy acceptor DGAn (SA) with the opposite chiral scaffold in a thermodynamic equilibrium state. Thus, the coassembly of RA/RD shows more effective triplet-triplet energy transfer (TTET) and stronger upconverted luminescence and upconverted circularly polarized luminescence in comparison to the segregation of SA/RD. The establishment of such an enantioselective TTA-UC system highlights the applications of chirality-regulated triplet fusion in optoelectronic materials.

3.
Acc Chem Res ; 53(7): 1279-1292, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32649172

RESUMO

Chiral functional materials with circularly polarized luminescence (CPL) have risen rapidly in recent years because of their fascinating characteristics and potential applications in various research fields. CPL refers to the differential spontaneous emission of left (L)- and right (R)-handed circularly polarized light upon photon or electron excitation. Generally, an outstanding CPL-active material needs to possess a high luminescence dissymmetry factor (glum) (defined as 2(IL - IR)/(IL + IR) where I is the emission intensity), which is between -2 and +2. Although the exciting development in CPL-active materials was achieved, the modulation of CPL signs is still a challenge. For small organic systems, a relatively small glum value, one of the key parameters of CPL, limits their practical applications. Searching for efficient approaches for amplifying glum is important. Therefore, over the past decades, besides optimizing the structure of small molecules, many other strategies to obtain efficient CPL-active materials have been developed. For instance, self-assembly has been well demonstrated as an effective approach to amplify the supramolecular chirality as well as the glum values. On the other hand, chiral liquid crystals (CLCs), which are capable of selective reflection of left- and right-handed circularly polarized light, also to serve as a host matrix for endowing guest emitters with CPL activity and high glum values. However, self-assembly focuses on modulating the conformation and spatial arrangement of chiral emitters. And the CPL of a luminophore-doped CLC matrix depends on the helix pitch and band gap positions. Lately, novel photophysical approaches to modulate CPL signs have gradually emerged.In this Account, we discuss the recent progress of excited-state-regulation involved CPL-active materials. The emergence, amplification, and inversion of CPL can be adjusted through regulation of the excited state of chiral emitters. For example, Förster resonance energy transfer (FRET) can amplify the glum values of chiral energy acceptors in chiral supramolecular assemblies. By combining the concepts of photon upconversion and CPL, high-energy upconverted circularly polarized emission was achieved under excitation of low-energy light, accompanied by an amplified glum. In addition, the organic systems with unpaired electrons, i.e., charge transfer (CT) system and open-shell π-radical, show favorable CPL properties, which can be flexibly tuned with an applied magnetic field. It should be noted that these photophysical process are associated with the excited state of chiral emitters. So far, while the main focus is on the regulation of the molecular and supramolecular nanostructures, direct regulation of the excited state of the chiral system will serve as a new platform to understand and regulate the CPL activity and will be helpful to develop smart chiroptical materials.

4.
Nanotechnology ; 32(47)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34252893

RESUMO

Photofluorochromic diarylethene (DAE) molecules have been widely investigated due to their excellent fatigue resistance and thermal stability. However, the poor water solubility of DAEs limits their biological applications to some extent. Herein, we reported two kinds of water-dispersible DAE nanoparticles (DAEI-NPs and DAEB-NPs), in which DAE molecules were stabilized by the amphiphilic polymer DSPE-mPEG2000 using the nanoprecipitation approach. The fabricated nanoparticles retain well-controlled luminescence and fluorescence photoswitching properties in aqueous solution, which could be reversibly switched on and off under the alternating irradiation of ultraviolet (UV) and visible light. In addition, the closed-ring isomers of DAEB-NPs performed hot-band-absorption-based photon upconversion when excited by a 593.5 nm laser. Bearing excellent photophysical properties and low cytotoxicity, DAEB-NPs were applicable for upconversion cell imaging without high-excitation power density and free from oxygen removal. Additionally, the imaging process could be switched on by regulating the photofluorochromic nanoparticles.


Assuntos
Teste de Materiais , Nanopartículas/química , Raios Ultravioleta , Células HeLa , Humanos , Microscopia de Fluorescência
5.
Angew Chem Int Ed Engl ; 60(9): 4575-4580, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33236479

RESUMO

A major trade-off in the field of circularly polarized luminescence (CPL) of pure organic materials is that the large luminescence dissymmetry factor (glum ) usually gives rise to the suppression of luminescence efficiency (ΦPL ). Here, a supramolecular self-assembled system, driven by arene-perfluoroarene (AP) interactions of chiral polycyclic aromatic hydrocarbons (PAHs) and octafluoronaphthalene (OFN), is reported to provide a solution to this problem. Two kinds of chiral PAHs based on pyrene and anthracene could co-assemble with OFN in hybrid solvents to form long-range-ordered AP assemblies. The detailed process of AP interaction driving self-assembly was verified by morphological measurements and fluorescence spectra. The AP assemblies exhibited chirality amplification not only in the excited state but also in the ground state. In addition, the AP assemblies showed an enhanced luminescence efficiency compared with the individual chiral PAHs due to the energy-barrier effect of OFN. The present strategy based on AP interactions could be applied to boost the development of highly efficient CPL-active materials.

6.
Angew Chem Int Ed Engl ; 60(42): 22711-22716, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34411386

RESUMO

Self-assembled chiroptical materials have attracted considerable attention due to their great applications in wide fields. During the chiral self-assembly, it remains unknown how achiral molecules can affect the assembly process and their final chiroptical performance. Herein, we report an achiral molecule directed chiral self-assembly via halogen bonds, exhibiting not only an unprecedented chiral fractal architecture but also significantly amplified circularly polarized luminescence (CPL). Two axially chiral emitters with halogen bond sites co-assemble with an achiral 1,4-diiodotetrafluorobenzene (F4 DIB) and well-ordered chiral fractal structures with asymmetry amplification are obtained. The enhancement of the dissymmetry factors of the assemblies was up to 0.051 and 0.011, which was approximately 100 folds than those of the corresponding molecules. It was found that both the design of the chiral emitter and the highly directional halogen bond played an important role in hierarchically chirality transfer from chiral emitters to the micrometer scale chiral fractal morphology and amplified dissymmetry factors. We hope that this strategy can give a further insight into the fabrication of structurally unique featured highly efficient chiroptical materials.

7.
Angew Chem Int Ed Engl ; 58(3): 785-790, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30426680

RESUMO

Photosensitive cinnamic acid conjugated glutamides were designed to demonstrate photocontrolled hierarchical chirality transfer and switching in self-assembled systems. In methanol, the cinnamic acid derivatives self-assembled into superhelices, which could be switched into nanokebabs upon UV irradiation. These two nanostructures showed opposite helicity. The chiral nanostructures could further convey their chirality to achiral fluorescent molecules and result in the emission of circularly polarized luminescence (CPL). Remarkably, the CPL followed the helicity of the chiral nanostructure rather than the inherent molecular chirality. Photodriven dimerization of the cinnamic moiety lead to a significant change in molecular packing and subsequent switching of the helicity of the formed nanostructures.

8.
Angew Chem Int Ed Engl ; 58(21): 7013-7019, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30934163

RESUMO

Achieving a large dissymmetry factor (glum ) is a challenge in the field of circularly polarized luminescence (CPL). A chiral charge-transfer (CT) system consisting of chiral electron donor and achiral electron acceptor shows bright circularly polarized emission with large glum value. The chiral emissive CT complexes could be fabricated through various approaches, such as grinding, crystallization, spin coating, and gelatinization, by simply blending chiral donor and achiral acceptor. The structural synergy originating from π-π stacking and strong CT interactions resulted in the long-range ordered self-assembly, enabling the formation of supramolecular gels. Benefiting from the large magnetic dipole transition moment in the CT state, the CPL activity of CT complexes exhibited large circular polarization. Our design strategy of the chiral emissive CT complexes is expected to help the development of new molecular engineering strategies for designing highly efficient CPL-active materials.

9.
Angew Chem Int Ed Engl ; 58(15): 4978-4982, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30773759

RESUMO

A chiral zeolitic imidazolate framework (ZIF) showing circularly polarized luminescence (CPL) has been successfully constructed by blending binapthyl-derived chiral emitters with ZIF-8 rhombic dodecahedron nanoparticles. This approach solves a major trade-off in CPL-active materials: the large luminescence dissymmetry factor (glum ) always suffers from suppression of luminescence efficiency. Compared to the optical properties of chiral emitters, the obtained chiral ZIF nanomaterials showed an enhanced fluorescence efficiency while the |glum | value is significantly amplified by one order of magnitude. Additionally, enantioselective fluorescence sensing in response to α-hydroxycarboxylic acids has been enhanced in chiral ZIFs. Reorganization and conjunction of chiral emitters to the skeleton of ZIF nanoparticles can greatly improve both the luminescence quantum yield and circularly polarization, which facilitates the design of more efficient chiroptical materials.

10.
Langmuir ; 34(20): 5821-5830, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29672070

RESUMO

Soft nanomaterials with circularly polarized luminescence (CPL) have been currently attracting great interest. Here, we report a pyrene-containing π-peptide dendron hydrogel, which shows 1D and 2D nanostructures with varied CPL activities. It was found that the individual dendrons formed hydrogels in a wide pH range (3-12) and self-assembled into helices with pH-tuned pitches. Through chirality transfer, the pyrene unit could show CPL originated from both the monomer and excimer bands. When cyclodextrin was introduced, different supra-dendrons were obtained with ß-cyclodextrin (PGAc@ß-CD) and γ-cyclodextrin (PGAc@γ-CD) through host-guest interactions, respectively. Interestingly, the PGAc@ß-CD and PGAc@γ-CD supra-dendrons self-assembled into 2D nanosheet and entangled nanofibers, respectively, showing cyclodextrin induced circularly polarized emission from both the monomer and excimer bands of the pyrene moiety. Thus, through a simple host-guest interaction, both the nanostructures and the chiroptical activities could be modulated.

11.
J Am Chem Soc ; 139(29): 9783-9786, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28686421

RESUMO

Amplification of circularly polarized luminescence (CPL) is demonstrated in a triplet-triplet annihilation-based photon upconversion (TTA-UC) system. When chiral binaphthyldiamine acceptors are sensitized with an achiral Pt(II) octaethylporphine (PtOEP) in solution, upconverted circularly polarized luminescence (UC-CPL) were observed for the first time, in which the positive or negative circularly polarized emission could be obtained respectively, following the molecular chirality of the acceptors (R/S). More interestingly, one order of magnitude amplification of the dissymmetry factor glum in UC-CPL was obtained in comparison with the normal promoted CPL. The multistep photophysical process of TTA-UC including triplet-triplet energy transfer (TTET) and triplet-triplet annihilation (TTA) have been suggested to enhance the UC-CPL, which provided a new strategy to design CPL materials with a higher dissymmetry factor.

12.
Photochem Photobiol Sci ; 16(9): 1384-1390, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28649689

RESUMO

Metallophthalocyanines (MPc-o-Cou, M = Fe, Co, Ni, and Cu) with fourth period metal ions have been successfully applied as a sensitizer coupled with rubrene (Rub) in photon upconversion based on triplet-triplet annihilation. An upconversion quantum yield (ϕPUC) of up to 4.82% was observed in the CoPc-o-Cou : Rub couple. The absorption and phosphorescence emission spectra showed that the Q bands and phosphorescence emission peaks were dramatically dependent on the number of d-electrons of the metal ions in MPc-o-Cou. These results suggested that the photon upconversion behavior of MPc-o-Cou : Rub systems could be managed by altering the metal ions in MPc-o-Cou.

13.
Adv Sci (Weinh) ; : e2406890, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225582

RESUMO

Interactions between lone pairs and aromatic π systems are significant across biology and self-assembled materials. Herein, employing an achiral confinement metal-organic framework (MOF) encapsulates guest molecules, it is successfully realized that lone pair (lp)-π interaction induces fluorescence "turn-on" and circularly polarized luminescence for the first time. The MOFs synthesized based on naphthalenediimide show nearly non-emissive, which can be light-up by introducing acetone or ester guests containing lone pairs-π interaction. Furthermore, the introduction of a series of lp-rich chiral esters induces supramolecular chirality as well as circularly polarized luminescence in achiral MOFs, while also observing chiral adaptability. This work first demonstrates the luminescence and chiral induction via lone pair electrons-π interactions, presenting a fresh paradigm for the advancement of chiroptical materials.

14.
Mater Today Bio ; 28: 101209, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39221205

RESUMO

The development of novel phototheranostic agents with significant potential in bioimaging-guided therapy is highly desirable for precise tumor therapy. Herein, NIR laser-activated ruthenium phthalocyanine (PcRu) loaded sub-30 nm targeting lipid nanoparticles (α-PcRu-NPs) were fabricated for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Due to the formation of J-type aggregation of PcRu in the core of the nanostructure, the α-PcRu-NPs exhibited high stability, efficient NIR absorption, reduced singlet oxygen generation, high photothermal activity, and intense photoacoustic signal. With the M2 macrophage target peptide (M2pep) modification and small size of α-PcRu-NPs, in vivo evaluations reveal that α-PcRu-NPs can specifically target and deeply penetrate the tumor foci. Under a high contrast PAI guidance with α-PcRu-NPs (744 nm, 0.35 µW), it also realizes superior photothermal therapy (PTT) for breast cancer under 670 nm laser irradiation (0.5 W/cm2). The prominent therapeutic efficacy of α-PcRu-NP-based PTT not only directly kills tumor cells, but also enhances the immune response by promoting dendritic cell maturation and increasing cytotoxic T cell infiltration. Thus, this work broadens the applications of phthalocyanine derivatives as phototheranostics in the PAI-guided PTT field.

15.
Opt Express ; 21(11): 13419-24, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736594

RESUMO

A magnetic field sensor is proposed by placing a dual-polarization fiber grating laser under a copper wire. With a perpendicular magnetic field applied, an electrical current flowing through the copper wire can generate Ampere force to squeeze the fiber grating laser, resulting in the birefringence change inside the laser cavity and hence the change of the beat note frequency. When an alternating current is injected into the copper wire, the magnetic field induced beat note frequency change can be discriminated from environment disturbances. A novel fiber-optic magnetic field sensor is therefore demonstrated with high sensitivity and inherent immunity to disturbances.

16.
Opt Express ; 21(25): 30156-62, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514594

RESUMO

In this paper, we demonstrate that the sensitivity of Faraday effect based heterodyning fiber laser sensors for magnetic field can be effectively enhanced by lowering the intrinsic linear birefringence inside the fiber laser cavity. Well explained by theoretical analysis and confirmed by birefringence tuning through transversal force, it shows that the sensitivity to magnetic field intensity is inversely proportional to the linear birefringence. A CO(2)-laser treatment is therefore proposed to tune the intra-cavity linear birefringence. With CO(2)-laser treatment, the intra-cavity linear birefringence can be lowered permanently to effectively enhance the sensitivity of a heterodyning fiber laser sensor to magnetic field.

17.
Opt Lett ; 38(5): 688-90, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23455266

RESUMO

A polarimetric heterodyning fiber grating laser is proposed to sense a magnetic field. When a magnetic field is parallel to the fiber grating laser, a circular birefringence is induced into the laser cavity. An elliptical birefringence results due to the circular birefringence and the intrinsic linear birefringence of the laser cavity. The elliptical birefringence is translated to the beat note frequency between the two orthogonally polarized laser outputs after photodetection. Confirmed by experiment results, it shows that the beat note frequency shift is proportional to the square of the magnetic field magnitude. Because the fiber laser is as short as less than 2 cm, a miniature magnetic field sensor is then demonstrated in principle.

18.
Nat Commun ; 14(1): 6123, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777553

RESUMO

Existing circularly polarized luminescence materials can hardly satisfy the requirements of both large luminescence dissymmetry factor and high luminescent quantum yield, which hinders their practical applications. Here, we present a soft photonic crystal film embedded with chiral nanopores that possesses excellent circularly polarized luminescence performance with a high luminescence dissymmetry factor as well as a large luminescent quantum yield when loaded with various luminescent dyes. Benefitting from the retention of chiral nanopores imprinted from a chiral liquid crystal arrangement, the chiral soft photonic crystal film can not only endow dyes with chiral properties, but also effectively avoid severe aggregation of guest dye molecules. More importantly, the soft photonic crystal film can be recycled many times by loading and eluting guest dye molecules while retaining good stability as well as circularly polarized luminescence performance, enabling various applications, including smart windows, multi-color circularly polarized luminescence and anticounterfeiting.

19.
Nat Commun ; 14(1): 81, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604426

RESUMO

The development of circularly polarized luminescence (CPL)-active materials with both large luminescence dissymmetry factor (glum) and high emission efficiency continues to be a major challenge. Here, we present an approach to improve the overall CPL performance by integrating triplet-triplet annihilation-based photon upconversion (TTA-UC) with localized surface plasmon resonance. Dye-loaded chiral micelles possessing TTA-UC ability are designed and attached on the surface of achiral gold nanorods (AuNRs). The longitudinal and transversal resonance peaks of AuNRs overlap with the absorption and emission of dye-loaded chiral micelles, respectively. Typically, 43-fold amplification of glum value accompanied by 3-fold enhancement of upconversion are obtained simultaneously when Au@Ag nanorods are employed in the composites. More importantly, transient absorption spectra reveal a fast accumulation of spin-polarized triplet excitons in the composites. Therefore, the enhancement of chirality-induced spin polarization should be in charge of the amplification of glum value. Our design strategy suggests that combining plasmonic nanomaterials with chiral organic materials could aid in the development of chiroptical nanomaterials.

20.
Chem Sci ; 13(20): 6074-6080, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685809

RESUMO

Developing solid-state materials and greatly improving the luminescence dissymmetry factors (g lum) are the key issues for the future oriented practical application in the field of circularly polarized luminescence (CPL). However, most of the solid-state CPL-active materials suffer from aggregation caused emission quenching and relatively small g lum values, which intensively restrict the development and application. In this work, high-performance CPL-active solid-state materials were achieved by regulating the excited state chirality of a series of bi-pyrene based chiral emitters. Due to the reversible mechanochromic luminescence under external stimuli, their excited state chirality can also be switched. It was found that the pristine amorphous powder possessed weak but obvious chiroptical properties because of the inherently chiral structures. Mechanical grinding could switch the fluorescence color and eliminate the CPL activity. Subsequently, by carrying out solvent fumigation, instant crystallization with well-defined microcrystal formation occurred, which could activate the CPL emission. Due to the chiral supramolecular arrangement of chromophores in the crystalline state, the resulting excimer emission in microcrystals showed chirality amplification not only in the excited state but also in the ground state. These findings not only provide a new method to fabricate high-performance CPL-active solid-state materials, but also clarify the chirality origin of pyrene-excimer-based chiral luminophores in various states which showed the importance of CPL as a probe of excited state chirality.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa