Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 610(7933): 661-666, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36198794

RESUMO

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

2.
Phys Rev Lett ; 127(5): 053602, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34397248

RESUMO

Non-line-of-sight (NLOS) imaging enables monitoring around corners and is promising for diverse applications. The resolution of transient NLOS imaging is limited to a centimeter scale, mainly by the temporal resolution of the detectors. Here, we construct an up-conversion single-photon detector with a high temporal resolution of ∼1.4 ps and a low noise count rate of 5 counts per second (cps). Notably, the detector operates at room temperature, near-infrared wavelength. Using this detector, we demonstrate high-resolution and low-noise NLOS imaging. Our system can provide a 180 µm axial resolution and a 2 mm lateral resolution, which is more than 1 order of magnitude better than that in previous experiments. These results open avenues for high-resolution NLOS imaging techniques in relevant applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa