Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
World J Surg Oncol ; 22(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172888

RESUMO

OBJECTIVE: There is no scientific consensus about the treatment of perforated gastric cancer (PGC). Therefore, the aim of this study was to investigate which is the better treatment option for PGC between the single-stage and two-stage strategies. METHODS: All 81 PGC patients from 13 medical institutions were retrospectively enrolled in this study. The PGC patients who underwent R0 gastrectomy were divided into one-stage surgery and two-stage surgery groups. The clinicopathological characteristics of the two groups were compared, and 415 regular gastric cancer patients without perforation were randomly selected as a control. The propensity score matching (PSM) method was used to find matched regular GC patients with similar clinicopathological parameters. The OS (overall survival) and the number harvested lymph nodes from PGC patients and regular GC patients were compared. RESULTS: Compared with PGC patients who underwent one-stage surgery, those who underwent two-stage surgery harvested significantly more lymph nodes [31(27, 38) vs 17 (12, 24), P < 0.001], required less blood transfusion [0 (0, 100) vs 200 (0, 800), P = 0.034], had a shorter ICU stay [0 (0, 1.5) vs 3 (0, 3), P = 0.009], and had a significantly better OS (Median OS: 45 months vs 11 months, P = 0.007). Compared with propensity score-matched regular GC patients without perforation, PGC patients who underwent one-stage gastrectomy had a poorer quality of lymphadenectomy [17 (12, 24) vs 29 (21, 37), P < 0.001] and suffered a worse OS (Median OS: 18 months vs 30 months, P = 0.024). Conversely, two-stage gastrectomy can achieve a comparable quality of lymphadenectomy (P = 0.506) and a similar OS (P = 0.096) compared to propensity score-matched regular GC patients. CONCLUSIONS: For PGC patients in poor condition, two-stage treatment is a better option when D2 radical gastrectomy cannot be achieved in emergency surgery, based on our findings that two-stage gastrectomy could provide PGC patients with a better quality of lymphadenectomy and a better OS.


Assuntos
Laparoscopia , Neoplasias Gástricas , Humanos , Estudos Retrospectivos , Neoplasias Gástricas/complicações , Neoplasias Gástricas/cirurgia , Pontuação de Propensão , Laparoscopia/métodos , Excisão de Linfonodo/métodos , Gastrectomia/métodos , Resultado do Tratamento
2.
Immunopharmacol Immunotoxicol ; 45(1): 61-72, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36052873

RESUMO

BACKGROUND: This study is designed to fill the research gap concerning the efficacy of Tripterygium glycoside (TG) on Interleukin-1ß (IL-1ß)-induced inflammation and injury in chondrocytes. METHODS: Chondrocytes were isolated from Sprague-Dawley rats. After the treatment with IL-1ß and TG and transfection, the viability and apoptosis of chondrocytes were determined via Cell Counting Kit-8 (CCK-8) assay and flow cytometry. The levels of inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-8 were determined by enzyme-linked immunosorbent assay (ELISA). Relative expression levels of potential microRNAs (miRNAs, miRs) that may target toll-like receptor 4 (TLR4), as well as apoptosis- and TLR4/nuclear factor-κB (TLR4/NF-κB) pathway-associated factors were quantified using quantitative real-time (qRT) PCR and western blot. The targeting relationship between miR-216a-5p and TLR4 was predicted by TargetScan and further confirmed by dual-luciferase reporter assay. RESULTS: The viability was reduced yet the apoptosis and inflammation were promoted in IL-1ß-treated chondrocytes, where upregulation of Bax, Cleaved caspase 3, TLR4, Myeloid differentiation factor 88 (MyD88), phosphorylation of P65 and IκBα yet downregulation of Bcl-2 and IκBα were evidenced. Strikingly, the above changes were reversed by TG. TG also offset the effects of IL-1ß on repressing the expression of miR-216a-5p, the miRNA targeting TLR4. Additionally, TLR4 overexpression neutralized the impacts of TG upon viability, apoptosis, and TLR4 expression in IL-1ß-treated chondrocytes, while all these effects induced by TLR4 overexpression could be restored by miR-216a-5p. CONCLUSIONS: TG protects chondrocytes against IL-1ß-induced inflammation and apoptosis via miR-216a-5p/TLR4/NF-κB axis.


Assuntos
MicroRNAs , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Tripterygium/genética , Tripterygium/metabolismo , Transdução de Sinais , Glicosídeos/farmacologia , Condrócitos/metabolismo , Interleucina-1beta/metabolismo , Ratos Sprague-Dawley , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose
3.
Sci Total Environ ; : 175038, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39059663

RESUMO

Rice is one of the world's major food crops. Changes in major climatic factors such as temperature, rainfall, solar radiation and carbon dioxide (CO2) concentration have an important impact on rice growth and yield. However, many of the current studies that predict the impact of future climate change on rice yield are affected by uncertainties such as climate models, climate scenarios, model parameters and structure, and showing great differences. This study was based on the assessment results of the impact of climate change on rice in the future of 111 published literature, and comprehensively analyzed the impact and uncertainty of climate change on rice yield. This study utilized local polynomial (Loess) regression analysis to investigate the impact of changes in mean temperature, minimum temperature, maximum temperature, solar radiation, and precipitation on relative rice yield variations within a complete dataset. A linear mixed-effects model was used to quantitatively analyze the relationships between the restricted datasets. The qualitative analysis based on the entire dataset revealed that rice yields decreased with increasing average temperature. The precipitation changed between 0 and 25 %, it was conducive to the stable production of rice, and when the precipitation changed >25 %, it would cause rice yield reduction. The change of solar radiation was less than -1.15 %, the rice yield increases with the increase of solar radiation, and when the change of solar radiation exceeds -1.15 %, the rice yield decreases. Elevated CO2 concentrations and management practices could mitigate the negative effects of climate change. The results of a quantitative analysis utilizing the mixed effects model revealed that average temperature, precipitation, CO2 concentration, and adaptation methods all had a substantial impact on rice production, and elevated CO2 concentrations and management practices could exert positive influences on rice production. For every 1 °C and 1 % increase in average temperature and precipitation, rice yield decreased by 3.85 % and 0.56 %, respectively. For every 100 ppm increase in CO2 concentration, rice yield increased by 7.1 %. The variation of rice yield under different climate models, study sites and climate scenarios had significant variability. Elevated CO2 concentrations and management practices could compensate for the negative effects of climate change, benefiting rice production. This study comprehensively collected and analyzed a wide range of literature and research, which provides an in-depth understanding of the impacts of climate change on rice production and informs future research and policy development.

4.
Mol Cancer Ther ; 19(1): 178-186, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582530

RESUMO

Viral-based chimeric antigen receptor-engineered T (CAR T)-cell manufacturing has potential safety risks and relatively high costs. The nonviral minicircle DNA (mcDNA) is safer for patients, cheaper to produce, and may be a more suitable technique to generate CAR T cells. In this study, we produced mcDNA-based CAR T cells specifically targeting prostate stem cell antigen (PSCA; mcDNA-PSCA-CAR T cells). Our results showed that mcDNA-PSCA-CAR T cells persisted in mouse peripheral blood as long as 28 days and demonstrated more CAR T-cell infiltration, higher cytokine secretion levels, and better antitumor effects. Together, our results suggest that mcDNA-CAR can be a safe and cost-effective platform to produce CAR T cells.


Assuntos
DNA/genética , Neoplasias/genética , Receptores de Antígenos de Linfócitos T/genética , Animais , Humanos , Masculino , Camundongos , Neoplasias/metabolismo
5.
Cancer Chemother Pharmacol ; 83(5): 911-920, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30848330

RESUMO

Activation of programmed death-1 (PD-1) and cytotoxic T-lymphocyte antigen-4 (CTLA-4) on T cells leads to T cell exhaustion and ultimately facilitates tumor progression. Recent success of using immune cell checkpoint inhibitors offers a great promise to treat various cancers, including bladder cancer. However, the expression pattern and therapeutic value of PD-1 and CTLA-4 in peripheral blood T cells remain largely unexplored. In this study, we presume that disruption of the potential dysregulated checkpoint molecules in peripheral blood T cells may improve the anti-tumor efficacy of cytotoxic T cells in bladder cancer. We showed that both PD-1 and CTLA-4 expression were specifically elevated on CD8 + T cells but not CD4 + T cells in peripheral blood of patients with bladder cancer compared with that in healthy donors. Notably, CTLA-4 expression was significantly higher in muscle-invasive bladder cancer (MIBC) and correlated with tumor size. By blocking CTLA-4 with anti-CTLA-4 antibody and CRISPR-Cas9-mediated CTLA-4 disruption, we revealed that CTLA-4-disrupted CTLs had enhanced cellular immune response and superior cytotoxicity to the CD80/CD86-positive bladder cancer cells in vitro. Moreover, the CTLA-4-disrupted CTLs exhibited a pronounced anti-tumor effect in vivo as demonstrated by prophylactic assay and therapeutic assay in the subcutaneous xenograft model. Collectively, our findings confirm improved therapeutic efficacy of CTLA-4-disrupted CTLs and provides the potential strategy for targeting immune checkpoints to enhance the promising immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/genética , Receptor de Morte Celular Programada 1/genética , Neoplasias da Bexiga Urinária/patologia , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Imunoterapia/métodos , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Neoplasias da Bexiga Urinária/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Oncotarget ; 9(4): 5208-5215, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29435173

RESUMO

Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor that functions to attenuate T cell activation. In this study, we knocked out (KO) PD-1 in cytotoxic T lymphocytes (CTLs) using CRISPR-Cas9 system to evaluate its effect on the anti-tumor activity of the CTLs against multiple myeloma (MM). Results show that PD-1 KO CTLs facilitate apoptosis and caspase activation of the co-cultured MM cells and enhanced MM cell death by 36% compared with the control. PD-1 KO also increased TNF-α and IFN-γ secretion of the CTLs by 2.4 and 1.9-fold respectively. The effectiveness of PD-1 KO in enhancing anti-tumor activity of the CTLs was verified in vivo using mouse xenograft model. The xenografted mice treated with PD-1 KO CTLs demonstrated repressed MM tumor growth and prolonged survival compared with the control group. We conclude that CRISPR-Cas9 is an efficient system to knock out PD-1 from CTLs and PD-1 KO could significantly enhance the anti-tumor activity of CTLs.

7.
Gene ; 636: 36-41, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28888577

RESUMO

T cell-mediated anti-tumor immunity plays a pivotal role in cancer immune surveillance. Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is a protein receptor mainly expressed in activated T cells and regulatory T cells. CTLA-4 competes with CD28 for ligand binding and generates inhibitory signals to attenuate T cell activation. The blockade of CTLA-4 mediated immune inhibitory checkpoint has been associated with enhanced anti-tumor immunity. In this study, we use CRISPR-Cas9 system to knock out (KO) CTLA-4 from cytotoxic T lymphocytes (CTLs) and evaluate its effect on the anti-tumor activity of the CTLs. CTLA-4 KO CTLs robustly enhanced tumor cell death by 40% compared to the control and facilitated apoptosis and caspase activities in tumor cells. The knockout of CTLA-4 also increased TNF-α and IFN-γ secretion of the CTLs by approximately 2-fold. The effectiveness of CTLA-4 KO in enhancing anti-tumor activity of the CTLs was verified in vivo using mouse xenograft model. The xenografted mice treated with CTLA-4 KO CTLs demonstrated repressed tumor growth and prolonged survival compared to the control group. Our data suggest that CRISPR targeting CTLA-4 immune checkpoint could significantly improve the anti-tumor activity of CTLs.


Assuntos
Sistemas CRISPR-Cas , Antígeno CTLA-4/genética , Neoplasias/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apoptose , Antígeno CTLA-4/antagonistas & inibidores , Caspases/metabolismo , Células Cultivadas , Células Matadoras Induzidas por Citocinas/classificação , Citocinas/biossíntese , Células Dendríticas/classificação , Células HCT116 , Humanos , Imunofenotipagem , Camundongos SCID , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T Citotóxicos/classificação
8.
ACS Appl Mater Interfaces ; 9(4): 4244-4252, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28058829

RESUMO

Graphene was inserted into the interface between electric dipole layers from DEME-TFSI ionic liquid (top-gate) and ferroelectric Pb0.92La0.08Zr0.52Ti0.48O3 (PLZT, back-gate) to probe the interface dipole-dipole interaction in response to DC and pulsed gate voltages. A highly complicated behavior of the interface dipole-dipole interaction has been revealed as a combination of electrostatic and electrochemical effects. The interfacial polar molecules in the DEME-TFSI electrical double layer are pinned with assistance from the PLZT back-gate in response to a DC top-gate pump, leading to strong nonlinear electrochemical behavior. In contrast, depinning of these molecules can be facilitated by a faster pulsed top-gate pump, which results in a characteristic linear electrostatic behavior. This result not only sheds light on the dynamic dipole-dipole interactions on the interface between functional materials but also prototypes a unique pump and probe approach using graphene field effect transistors to detect the interface dipole-dipole interaction.

9.
Oncol Lett ; 14(6): 6907-6914, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29181105

RESUMO

The aim of the present study was to explore the clinicopathological and prognostic significance of long non-coding RNA (lncRNA) colon cancer-associated transcript 2 (CCAT2) expression in human colorectal cancer (CRC). Expression levels of lncRNA CCAT2 in CRC, adjacent non-tumor and healthy colon mucosa tissues were detected by quantitative polymerase chain reaction. The disease-free survival and overall survival rates were evaluated using the Kaplan-Meier method, and multivariate analysis was performed using Cox proportional hazard analysis. The expression level of lncRNA CCAT2 in CRC tissues was increased significantly compared with adjacent normal tissues or non-cancerous tissues. CCAT2 expression was observed to be progressively increased between tumor-node-metastasis (TNM) stages I and IV. A high level of CCAT2 expression was revealed to be associated with poor cell differentiation, deeper tumor infiltration, lymph node metastasis, distance metastasis, vascular invasion and advanced TNM stage. Compared with patients with low levels of CCAT2 expression, patients with high levels of CCAT2 expression had shorter disease-free survival and overall survival times. Multivariate analyses indicated that high CCAT2 expression was an independent poor prognostic factor. Therefore, increased lncRNA CCAT2 expression maybe a potential diagnostic biomarker for CRC, and an independent predictor of prognosis in patients with CRC.

10.
Chin Med J (Engl) ; 125(5): 794-800, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22490577

RESUMO

BACKGROUND: Adoptive transfer of allogeneic tumor-specific T cells often results in severe graft-versus-host disease (GVHD). Here, we sought to maximize graft-versus-tumor and minimize GVHD by using haploidentical T cells in pre-irradiated B16-melanoma bearing mice. METHODS: C57BL/6 mice bearing B16-melanoma tumors were irradiated with 0, 5, or 7 Gy total body irradiation (TBI), or 7 Gy TBI plus bone marrow transplantation. Tumor areas were measured every 3 days to assess the influence of irradiation treatment on tumor regression. B16-melanoma bearing mice were irradiated with 7 Gy TBI; sera and spleens were harvested at days 1, 3, 5, 7, 9, 11, and 13 after irradiation. White blood cell levels were measured and transforming growth factor ß1 (TGF-b1) and interleukin 10 (IL-10) levels in serum were detected using enzyme-linked immunosorbent assay (ELISA) kits. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were performed to test TGF-b1, IL-10 and Foxp3 mRNA levels and the proportion of CD4+CD25+Foxp3+ T-regulatory cells (Tregs) in spleens. B16-melanoma bearing C57BL/6 mice were irradiated with 7 Gy TBI followed by syngeneic (Syn1/Syn2) or haploidentical (Hap1/Hap2), dendritic cell-induced cytotoxic T lymphocytes (DC-CTLs) treatment, tumor areas and system GVHD were observed every 3 days. Mice were killed 21 days after the DC-CTLs adoptive transfer; histologic analyses of eyes, skin, liver, lungs, and intestine were then performed. RESULTS: Irradiation with 7 Gy TBI on the B16-melanoma-bearing mice did not influence tumor regression compared to the control group; however, it down-regulated the proportion of Tregs in spleens and the TGF-b1 and IL-10 levels in sera and spleens, suggesting inhibition of autoimmunity and intervention of tumor microenvironment. Adoptive transfer of haploidentical DC-CTLs significantly inhibited B16-melanoma growth. GVHD assessment and histology analysis showed no significant difference among the groups. CONCLUSION: Adoptive transfer of haploidentical tumor-specific T cells in irradiation-pretreated B16-melanoma bearing mice preserved antitumor capacity without causing a GVHD response.


Assuntos
Melanoma Experimental/terapia , Linfócitos T/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Doença Enxerto-Hospedeiro , Imunoterapia Adotiva/métodos , Masculino , Melanoma Experimental/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa