Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38310330

RESUMO

MOTIVATION: The advancement of long-read RNA sequencing technologies leads to a bright future for transcriptome analysis, in which clustering long reads according to their gene family of origin is of great importance. However, existing de novo clustering algorithms require plenty of computing resources. RESULTS: We developed a new algorithm GeLuster for clustering long RNA-seq reads. Based on our tests on one simulated dataset and nine real datasets, GeLuster exhibited superior performance. On the tested Nanopore datasets it ran 2.9-17.5 times as fast as the second-fastest method with less than one-seventh of memory consumption, while achieving higher clustering accuracy. And on the PacBio data, GeLuster also had a similar performance. It sets the stage for large-scale transcriptome study in future. AVAILABILITY AND IMPLEMENTATION: GeLuster is freely available at https://github.com/yutingsdu/GeLuster.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica/métodos , Algoritmos , RNA-Seq , Análise por Conglomerados , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Software , Análise de Sequência de DNA/métodos
2.
J Struct Biol ; 216(1): 108044, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37967798

RESUMO

Fiducial marker detection in electron micrographs becomes an important and challenging task with the development of large-field electron microscopy. The fiducial marker detection plays an important role in several steps during the process of electron micrographs, such as the alignment and parameter calibrations. However, limited by the conditions of low signal-to-noise ratio (SNR) in the electron micrographs, the performance of fiducial marker detection is severely affected. In this work, we propose the MarkerDetector, a novel algorithm for detecting fiducial markers in electron micrographs. The proposed MarkerDetector is built upon the following contributions: Firstly, a wavelet-based template generation algorithm is devised in MarkerDetector. By adopting a shape-based criterion, a high-quality template can be obtained. Secondly, a robust marker determination strategy is devised by utilizing statistic-based filtering, which can guarantee the correctness of the detected fiducial markers. The average running time of our algorithm is 1.67 seconds with promising accuracy, indicating its practical feasibility for applications in electron micrographs.


Assuntos
Elétrons , Marcadores Fiduciais , Algoritmos , Microscopia
3.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34254977

RESUMO

RNA-seq technology is widely employed in various research areas related to transcriptome analyses, and the identification of all the expressed transcripts from short sequencing reads presents a considerable computational challenge. In this study, we introduce TransRef, a new computational algorithm for accurate transcriptome assembly by redefining a novel graph model, the neo-splicing graph, and then iteratively applying a constrained dynamic programming to reconstruct all the expressed transcripts for each graph. When TransRef is utilized to analyze both real and simulated datasets, its performance is notably better than those of several state-of-the-art assemblers, including StringTie2, Cufflinks and Scallop. In particular, the performance of TransRef is notably strong in identifying novel transcripts and transcripts with low-expression levels, while the other assemblers are less effective.


Assuntos
Algoritmos , Splicing de RNA , Transcriptoma , Conjuntos de Dados como Assunto , Genoma , RNA Mensageiro/genética
4.
Bioinformatics ; 38(20): 4797-4805, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-35977377

RESUMO

MOTIVATION: Serial-section electron microscopy (ssEM) is a powerful technique for cellular visualization, especially for large-scale specimens. Limited by the field of view, a megapixel image of whole-specimen is regularly captured by stitching several overlapping images. However, suffering from distortion by manual operations, lens distortion or electron impact, simple rigid transformations are not adequate for perfect mosaic generation. Non-linear deformation usually causes 'ghosting' phenomenon, especially with high magnification. To date, existing microscope image processing tools provide mature rigid stitching methods but have no idea with local distortion correction. RESULTS: In this article, following the development of unsupervised deep learning, we present a multi-scale network to predict the dense deformation fields of image pairs in ssEM and blend these images into a clear and seamless montage. The model is composed of two pyramidal backbones, sharing parameters and interacting with a set of registration modules, in which the pyramidal architecture could effectively capture large deformation according to multi-scale decomposition. A novel 'intermediate-space solving' paradigm is adopted in our model to treat inputted images equally and ensure nearly perfect stitching of the overlapping regions. Combining with the existing rigid transformation method, our model further improves the accuracy of sequential image stitching. Extensive experimental results well demonstrate the superiority of our method over the other traditional methods. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/HeracleBT/ssEM_stitching. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

5.
Bioinformatics ; 38(7): 2022-2029, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35134862

RESUMO

MOTIVATION: Cryo-electron microscopy (cryo-EM) is a widely used technology for ultrastructure determination, which constructs the 3D structures of protein and macromolecular complex from a set of 2D micrographs. However, limited by the electron beam dose, the micrographs in cryo-EM generally suffer from the extremely low signal-to-noise ratio (SNR), which hampers the efficiency and effectiveness of downstream analysis. Especially, the noise in cryo-EM is not simple additive or multiplicative noise whose statistical characteristics are quite different from the ones in natural image, extremely shackling the performance of conventional denoising methods. RESULTS: Here, we introduce the Noise-Transfer2Clean (NT2C), a denoising deep neural network (DNN) for cryo-EM to enhance image contrast and restore specimen signal, whose main idea is to improve the denoising performance by correctly learning the noise distribution of cryo-EM images and transferring the statistical nature of noise into the denoiser. Especially, to cope with the complex noise model in cryo-EM, we design a contrast-guided noise and signal re-weighted algorithm to achieve clean-noisy data synthesis and data augmentation, making our method authentically achieve signal restoration based on noise's true properties. Our work verifies the feasibility of denoising based on mining the complex cryo-EM noise patterns directly from the noise patches. Comprehensive experimental results on simulated datasets and real datasets show that NT2C achieved a notable improvement in image denoising, especially in background noise removal, compared with the commonly used methods. Moreover, a case study on the real dataset demonstrates that NT2C can greatly alleviate the obstacles caused by the SNR to particle picking and simplify the identifying of particles. AVAILABILITYAND IMPLEMENTATION: The code is available at https://github.com/Lihongjia-ict/NoiseTransfer2Clean/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Redes Neurais de Computação , Microscopia Crioeletrônica/métodos , Razão Sinal-Ruído , Proteínas , Processamento de Imagem Assistida por Computador/métodos
6.
Bioinformatics ; 37(1): 107-117, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33416867

RESUMO

MOTIVATION: Electron tomography (ET) has become an indispensable tool for structural biology studies. In ET, the tilt series alignment and the projection parameter calibration are the key steps toward high-resolution ultrastructure analysis. Usually, fiducial markers are embedded in the sample to aid the alignment. Despite the advances in developing algorithms to find correspondence of fiducial markers from different tilted micrographs, the error rate of the existing methods is still high such that manual correction has to be conducted. In addition, existing algorithms do not work well when the number of fiducial markers is high. RESULTS: In this article, we try to completely solve the fiducial marker correspondence problem. We propose to divide the workflow of fiducial marker correspondence into two stages: (i) initial transformation determination, and (ii) local correspondence refinement. In the first stage, we model the transform estimation as a correspondence pair inquiry and verification problem. The local geometric constraints and invariant features are used to reduce the complexity of the problem. In the second stage, we encode the geometric distribution of the fiducial markers by a weighted Gaussian mixture model and introduce drift parameters to correct the effects of beam-induced motion and sample deformation. Comprehensive experiments on real-world datasets demonstrate the robustness, efficiency and effectiveness of the proposed algorithm. Especially, the proposed two-stage algorithm is able to produce an accurate tracking within an average of ⩽ 100 ms per image, even for micrographs with hundreds of fiducial markers, which makes the real-time ET data processing possible. AVAILABILITY AND IMPLEMENTATION: The code is available at https://github.com/icthrm/auto-tilt-pair. Additionally, the detailed original figures demonstrated in the experiments can be accessed at https://rb.gy/6adtk4. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
Bioinformatics ; 37(11): 1616-1626, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31617571

RESUMO

MOTIVATION: Electron tomography (ET) offers a unique capacity to image biological structures in situ. However, the resolution of ET reconstructed tomograms is not comparable to that of the single-particle cryo-EM. If many copies of the object of interest are present in the tomograms, their structures can be reconstructed in the tomogram, picked, aligned and averaged to increase the signal-to-noise ratio and improve the resolution, which is known as the subtomogram averaging. To date, the resolution improvement of the subtomogram averaging is still limited because each reconstructed subtomogram is of low reconstruction quality due to the missing wedge issue. RESULTS: In this article, we propose a novel computational model, the constrained reconstruction model (CRM), to better recover the information from the multiple subtomograms and compensate for the missing wedge issue in each of them. CRM is supposed to produce a refined reconstruction in the final turn of subtomogram averaging after alignment, instead of directly taking the average. We first formulate the averaging method and our CRM as linear systems, and prove that the solution space of CRM is no larger, and in practice much smaller, than that of the averaging method. We then propose a sparse Kaczmarz algorithm to solve the formulated CRM, and further extend the solution to the simultaneous algebraic reconstruction technique (SART). Experimental results demonstrate that CRM can significantly alleviate the missing wedge issue and improve the final reconstruction quality. In addition, our model is robust to the number of images in each tilt series, the tilt range and the noise level. AVAILABILITY AND IMPLEMENTATION: The codes of CRM-SIRT and CRM-SART are available at https://github.com/icthrm/CRM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Algoritmos , Microscopia Crioeletrônica , Razão Sinal-Ruído
8.
Fish Shellfish Immunol ; 131: 498-504, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36280128

RESUMO

Exosomes are extracellular vesicles secreted by diverse cell under normal or abnormal physiological conditions, which could carry a range of bioactive molecules and play significant roles in biological processes, such as intercellular communication and immune response. In the current study, a preliminary study was performed to investigate the exosomal shuttle protein in Chlamys farreri (designated as CfesPro) and to predict the potential function of exosomes in scallop innate immunity. The serum derived exosomes (designated as CfEVs) were obtained from lipopolysaccharide (LPS)-stimulated C. farreri and untreated ones. After confirmation and characterization by transmission electron microscopy (TEM), nano-HPLC-MS/MS spectrometry was performed on CfEVs using a label-free quantitative method. Totally 2481 exosomal shuttle proteins were identified in CfEVs proteomic data, which included many innate immune related proteins. GO and KOG functional annotation showed that CfesPro participated in cellular processes, metabolism reactions, signaling transductions, immune responses and so on. Moreover, 1421 proteins in CfesPro were enriched to 324 pathways by KEGG analysis, including several immune-related pathways, such as autophagy, apoptosis and lysosome pathway. Meanwhile, eight autophagy-related proteins were initially identified in CfesPro, indicating that CfEVs had a potential role with autophagy. All these findings showed that CfEVs were involved in C. farreri innate immune defenses. This research would enrich the protein database of marine exosomes and provide a basis for the exploration of immune defense systems in marine invertebrates.


Assuntos
Pectinidae , Proteômica , Animais , Espectrometria de Massas em Tandem , Proteínas/metabolismo , Imunidade Inata
9.
Bioinformatics ; 36(5): 1333-1343, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31593235

RESUMO

MOTIVATION: Genome diagnostics have gradually become a prevailing routine for human healthcare. With the advances in understanding the causal genes for many human diseases, targeted sequencing provides a rapid, cost-efficient and focused option for clinical applications, such as single nucleotide polymorphism (SNP) detection and haplotype classification, in a specific genomic region. Although nanopore sequencing offers a perfect tool for targeted sequencing because of its mobility, PCR-freeness and long read properties, it poses a challenging computational problem of how to efficiently and accurately search and map genomic subsequences of interest in a pool of nanopore reads (or raw signals). Due to its relatively low sequencing accuracy, there is no reliable solution to this problem, especially at low sequencing coverage. RESULTS: Here, we propose a brand new signal-based subsequence inquiry pipeline as well as two novel algorithms to tackle this problem. The proposed algorithms follow the principle of subsequence dynamic time warping and directly operate on the electrical current signals, without loss of information in base-calling. Therefore, the proposed algorithms can serve as a tool for sequence inquiry in targeted sequencing. Two novel criteria are offered for the consequent signal quality analysis and data classification. Comprehensive experiments on real-world nanopore datasets show the efficiency and effectiveness of the proposed algorithms. We further demonstrate the potential applications of the proposed algorithms in two typical tasks in nanopore-based targeted sequencing: SNP detection under low sequencing coverage, and haplotype classification under low sequencing accuracy. AVAILABILITY AND IMPLEMENTATION: The project is accessible at https://github.com/icthrm/cwSDTWnano.git, and the presented bench data is available upon request. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Nanoporos , Algoritmos , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA , Software
10.
BMC Bioinformatics ; 21(Suppl 6): 202, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33203394

RESUMO

BACKGROUND: Electron tomography (ET) is an important technique for the study of complex biological structures and their functions. Electron tomography reconstructs the interior of a three-dimensional object from its projections at different orientations. However, due to the instrument limitation, the angular tilt range of the projections is limited within +70∘ to -70∘. The missing angle range is known as the missing wedge and will cause artifacts. RESULTS: In this paper, we proposed a novel algorithm, compressed sensing improved iterative reconstruction-reprojection (CSIIRR), which follows the schedule of improved iterative reconstruction-reprojection but further considers the sparsity of the biological ultra-structural content in specimen. The proposed algorithm keeps both the merits of the improved iterative reconstruction-reprojection (IIRR) and compressed sensing, resulting in an estimation of the electron tomography with faster execution speed and better reconstruction result. A comprehensive experiment has been carried out, in which CSIIRR was challenged on both simulated and real-world datasets as well as compared with a number of classical methods. The experimental results prove the effectiveness and efficiency of CSIIRR, and further show its advantages over the other methods. CONCLUSIONS: The proposed algorithm has an obvious advance in the suppression of missing wedge effects and the restoration of missing information, which provides an option to the structural biologist for clear and accurate tomographic reconstruction.


Assuntos
Algoritmos , Artefatos , Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X
11.
Bioinformatics ; 35(14): i249-i259, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510669

RESUMO

MOTIVATION: Electron tomography (ET) is a widely used technology for 3D macro-molecular structure reconstruction. To obtain a satisfiable tomogram reconstruction, several key processes are involved, one of which is the calibration of projection parameters of the tilt series. Although fiducial marker-based alignment for tilt series has been well studied, marker-free alignment remains a challenge, which requires identifying and tracking the identical objects (landmarks) through different projections. However, the tracking of these landmarks is usually affected by the pixel density (intensity) change caused by the geometry difference in different views. The tracked landmarks will be used to determine the projection parameters. Meanwhile, different projection parameters will also affect the localization of landmarks. Currently, there is no alignment method that takes interrelationship between the projection parameters and the landmarks. RESULTS: Here, we propose a novel, joint method for marker-free alignment of tilt series in ET, by utilizing the information underlying the interrelationship between the projection model and the landmarks. The proposed method is the first joint solution that combines the extrinsic (track-based) alignment and the intrinsic (intensity-based) alignment, in which the localization of landmarks and projection parameters keep refining each other until convergence. This iterative approach makes our solution robust to different initial parameters and extreme geometric changes, which ensures a better reconstruction for marker-free ET. Comprehensive experimental results on three real datasets show that our new method achieved a significant improvement in alignment accuracy and reconstruction quality, compared to the state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: The main program is available at https://github.com/icthrm/joint-marker-free-alignment. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Tomografia com Microscopia Eletrônica , Processamento de Imagem Assistida por Computador , Algoritmos , Coleta de Dados , Marcadores Fiduciais
12.
Bioinformatics ; 35(2): 319-328, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30010792

RESUMO

Motivation: Dual-axis electron tomography is an important 3 D macro-molecular structure reconstruction technology, which can reduce artifacts and suppress the effect of missing wedge. However, the fully automatic data process for dual-axis electron tomography still remains a challenge due to three difficulties: (i) how to track the mass of fiducial markers automatically; (ii) how to integrate the information from the two different tilt series; and (iii) how to cope with the inconsistency between the two different tilt series. Results: Here we develop a toolkit for fully automatic alignment of dual-axis electron tomography, with a simultaneous reconstruction procedure. The proposed toolkit and its workflow carries out the following solutions: (i) fully automatic detection and tracking of fiducial markers under large-field datasets; (ii) automatic combination of two different tilt series and global calibration of projection parameters; and (iii) inconsistency correction based on distortion correction parameters and the consequently simultaneous reconstruction. With all of these features, the presented toolkit can achieve accurate alignment and reconstruction simultaneously and conveniently under a single global coordinate system. Availability and implementation: The toolkit AuTom-dualx (alignment module dualxmauto and reconstruction module volrec_mltm) are accessible for general application at http://ear.ict.ac.cn, and the key source code is freely available under request. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Tomografia com Microscopia Eletrônica , Marcadores Fiduciais , Processamento de Imagem Assistida por Computador , Algoritmos , Software
13.
BMC Bioinformatics ; 20(1): 41, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30658571

RESUMO

BACKGROUND: Cryo-electron microscopy (cryo-EM) has become a widely used tool for determining the structures of proteins and macromolecular complexes. To acquire the input for single-particle cryo-EM reconstruction, researchers must select hundreds of thousands of particles from micrographs. As the signal-to-noise ratio (SNR) of micrographs is extremely low, the performance of automated particle-selection methods is still unable to meet research requirements. To free researchers from this laborious work and to acquire a large number of high-quality particles, we propose an automated particle-selection method (PIXER) based on the idea of segmentation using a deep neural network. RESULTS: First, to accommodate low-SNR conditions, we convert micrographs into probability density maps using a segmentation network. These probability density maps indicate the likelihood that each pixel of a micrograph is part of a particle instead of just background noise. Particles selected from density maps have a more robust signal than do those directly selected from the original noisy micrographs. Second, at present, there is no segmentation-training dataset for cryo-EM. To enable our plan, we present an automated method to generate a training dataset for segmentation using real-world data. Third, we propose a grid-based, local-maximum method to locate the particles from the probability density maps. We tested our method on simulated and real-world experimental datasets and compared PIXER with the mainstream methods RELION, DeepEM and DeepPicker to demonstrate its performance. The results indicate that, as a fully automated method, PIXER can acquire results as good as the semi-automated methods RELION and DeepEM. CONCLUSION: To our knowledge, our work is the first to address the particle-selection problem using the segmentation network concept. As a fully automated particle-selection method, PIXER can free researchers from laborious particle-selection work. Based on the results of experiments, PIXER can acquire accurate results under low-SNR conditions within minutes.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Algoritmos
14.
Bioinformatics ; 34(5): 853-863, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069299

RESUMO

Motivation: Automatic alignment, especially fiducial marker-based alignment, has become increasingly important due to the high demand of subtomogram averaging and the rapid development of large-field electron microscopy. Among the alignment steps, fiducial marker tracking is a crucial one that determines the quality of the final alignment. Yet, it is still a challenging problem to track the fiducial markers accurately and effectively in a fully automatic manner. Results: In this paper, we propose a robust and efficient scheme for fiducial marker tracking. Firstly, we theoretically prove the upper bound of the transformation deviation of aligning the positions of fiducial markers on two micrographs by affine transformation. Secondly, we design an automatic algorithm based on the Gaussian mixture model to accelerate the procedure of fiducial marker tracking. Thirdly, we propose a divide-and-conquer strategy against lens distortions to ensure the reliability of our scheme. To our knowledge, this is the first attempt that theoretically relates the projection model with the tracking model. The real-world experimental results further support our theoretical bound and demonstrate the effectiveness of our algorithm. This work facilitates the fully automatic tracking for datasets with a massive number of fiducial markers. Availability and implementation: The C/C ++ source code that implements the fast fiducial marker tracking is available at https://github.com/icthrm/gmm-marker-tracking. Markerauto 1.6 version or later (also integrated in the AuTom platform at http://ear.ict.ac.cn/) offers a complete implementation for fast alignment, in which fast fiducial marker tracking is available by the '-t' option. Contact: xin.gao@kaust.edu.sa. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Tomografia com Microscopia Eletrônica/métodos , Marcadores Fiduciais , Processamento de Imagem Assistida por Computador/métodos , Reprodutibilidade dos Testes
15.
Bioinformatics ; 34(17): i722-i731, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423085

RESUMO

Motivation: Long-reads, point-of-care and polymerase chain reaction-free are the promises brought by nanopore sequencing. Among various steps in nanopore data analysis, the end-to-end mapping between the raw electrical current signal sequence and the reference expected signal sequence serves as the key building block to signal labeling, and the following signal visualization, variant identification and methylation detection. One of the classic algorithms to solve the signal mapping problem is the dynamic time warping (DTW). However, the ultra-long nanopore sequencing and an order of magnitude difference in the sampling speed complexify the scenario and make the classical DTW infeasible to solve the problem. Results: Here, we propose a novel multi-level DTW algorithm, continuous wavelet DTW (cwDTW), based on continuous wavelet transforms with different scales of the two signal sequences. Our algorithm starts from low-resolution wavelet transforms of the two sequences, such that the transformed sequences are short and have similar sampling rates. Then the peaks and nadirs of the transformed sequences are extracted to form feature sequences with similar lengths, which can be easily mapped by the original DTW. Our algorithm then recursively projects the warping path from a lower-resolution level to a higher-resolution one by building a context-dependent boundary and enabling a constrained search for the warping path in the latter. Comprehensive experiments on two real nanopore datasets on human and on Pandoraea pnomenusa demonstrate the efficiency and effectiveness of the proposed algorithm. In particular, cwDTW can gain remarkable acceleration with tiny loss of the alignment accuracy. On the real nanopore datasets, cwDTW can finish an alignment task in few seconds, which is about 3000 times faster than the original DTW. By successfully applying cwDTW on the tasks of signal labeling and ultra-long sequence comparison, we further demonstrate the power and applicability of cwDTW. Availability and implementation: Our program is available at https://github.com/realbigws/cwDTW. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Análise de Sequência/métodos , Humanos , Nanoporos , Fatores de Tempo
16.
Bioinformatics ; 34(17): 2899-2908, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659695

RESUMO

Motivation: Oxford Nanopore sequencing is a rapidly developed sequencing technology in recent years. To keep pace with the explosion of the downstream data analytical tools, a versatile Nanopore sequencing simulator is needed to complement the experimental data as well as to benchmark those newly developed tools. However, all the currently available simulators are based on simple statistics of the produced reads, which have difficulty in capturing the complex nature of the Nanopore sequencing procedure, the main task of which is the generation of raw electrical current signals. Results: Here we propose a deep learning based simulator, DeepSimulator, to mimic the entire pipeline of Nanopore sequencing. Starting from a given reference genome or assembled contigs, we simulate the electrical current signals by a context-dependent deep learning model, followed by a base-calling procedure to yield simulated reads. This workflow mimics the sequencing procedure more naturally. The thorough experiments performed across four species show that the signals generated by our context-dependent model are more similar to the experimentally obtained signals than the ones generated by the official context-independent pore model. In terms of the simulated reads, we provide a parameter interface to users so that they can obtain the reads with different accuracies ranging from 83 to 97%. The reads generated by the default parameter have almost the same properties as the real data. Two case studies demonstrate the application of DeepSimulator to benefit the development of tools in de novo assembly and in low coverage SNP detection. Availability and implementation: The software can be accessed freely at: https://github.com/lykaust15/DeepSimulator. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma , Humanos , Nanoporos , Software
17.
Bioinformatics ; 34(13): i284-i294, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950012

RESUMO

Motivation: Super-resolution fluorescence microscopy with a resolution beyond the diffraction limit of light, has become an indispensable tool to directly visualize biological structures in living cells at a nanometer-scale resolution. Despite advances in high-density super-resolution fluorescent techniques, existing methods still have bottlenecks, including extremely long execution time, artificial thinning and thickening of structures, and lack of ability to capture latent structures. Results: Here, we propose a novel deep learning guided Bayesian inference (DLBI) approach, for the time-series analysis of high-density fluorescent images. Our method combines the strength of deep learning and statistical inference, where deep learning captures the underlying distribution of the fluorophores that are consistent with the observed time-series fluorescent images by exploring local features and correlation along time-axis, and statistical inference further refines the ultrastructure extracted by deep learning and endues physical meaning to the final image. In particular, our method contains three main components. The first one is a simulator that takes a high-resolution image as the input, and simulates time-series low-resolution fluorescent images based on experimentally calibrated parameters, which provides supervised training data to the deep learning model. The second one is a multi-scale deep learning module to capture both spatial information in each input low-resolution image as well as temporal information among the time-series images. And the third one is a Bayesian inference module that takes the image from the deep learning module as the initial localization of fluorophores and removes artifacts by statistical inference. Comprehensive experimental results on both real and simulated datasets demonstrate that our method provides more accurate and realistic local patch and large-field reconstruction than the state-of-the-art method, the 3B analysis, while our method is more than two orders of magnitude faster. Availability and implementation: The main program is available at https://github.com/lykaust15/DLBI. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Microscopia de Fluorescência , Software , Teorema de Bayes , Células/ultraestrutura , Simulação por Computador
18.
J Struct Biol ; 199(3): 196-208, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756247

RESUMO

We have developed a software package towards automatic electron tomography (ET): Automatic Tomography (AuTom). The presented package has the following characteristics: accurate alignment modules for marker-free datasets containing substantial biological structures; fully automatic alignment modules for datasets with fiducial markers; wide coverage of reconstruction methods including a new iterative method based on the compressed-sensing theory that suppresses the "missing wedge" effect; and multi-platform acceleration solutions that support faster iterative algebraic reconstruction. AuTom aims to achieve fully automatic alignment and reconstruction for electron tomography and has already been successful for a variety of datasets. AuTom also offers user-friendly interface and auxiliary designs for file management and workflow management, in which fiducial marker-based datasets and marker-free datasets are addressed with totally different subprocesses. With all of these features, AuTom can serve as a convenient and effective tool for processing in electron tomography.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Processamento de Imagem Assistida por Computador/métodos , Software , Algoritmos , Marcadores Fiduciais , Interface Usuário-Computador , Fluxo de Trabalho
19.
J Struct Biol ; 192(3): 403-417, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26433028

RESUMO

Although the topic of fiducial marker-based alignment in electron tomography (ET) has been widely discussed for decades, alignment without human intervention remains a difficult problem. Specifically, the emergence of subtomogram averaging has increased the demand for batch processing during tomographic reconstruction; fully automatic fiducial marker-based alignment is the main technique in this process. However, the lack of an accurate method for detecting and tracking fiducial markers precludes fully automatic alignment. In this paper, we present a novel, fully automatic alignment scheme for ET. Our scheme has two main contributions: First, we present a series of algorithms to ensure a high recognition rate and precise localization during the detection of fiducial markers. Our proposed solution reduces fiducial marker detection to a sampling and classification problem and further introduces an algorithm to solve the parameter dependence of marker diameter and marker number. Second, we propose a novel algorithm to solve the tracking of fiducial markers by reducing the tracking problem to an incomplete point set registration problem. Because a global optimization of a point set registration occurs, the result of our tracking is independent of the initial image position in the tilt series, allowing for the robust tracking of fiducial markers without pre-alignment. The experimental results indicate that our method can achieve an accurate tracking, almost identical to the current best one in IMOD with half automatic scheme. Furthermore, our scheme is fully automatic, depends on fewer parameters (only requires a gross value of the marker diameter) and does not require any manual interaction, providing the possibility of automatic batch processing of electron tomographic reconstruction.


Assuntos
Algoritmos , Tomografia com Microscopia Eletrônica/métodos , Marcadores Fiduciais , Processamento de Imagem Assistida por Computador/métodos , Automação , Centríolos , Hemocianinas/análise
20.
J Struct Biol ; 186(1): 167-80, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24582712

RESUMO

In electron tomography, alignment accuracy is critical for high-resolution reconstruction. However, the automatic alignment of a tilt series without fiducial markers remains a challenge. Here, we propose a new alignment method based on Scale-Invariant Feature Transform (SIFT) for marker-free alignment. The method covers the detection and localization of interest points (features), feature matching, feature tracking and optimization of projection parameters. The proposed method implements a highly reliable matching strategy and tracking model to detect a huge number of feature tracks. Furthermore, an incremental bundle adjustment method is devised to tolerate noise data and ensure the accurate estimation of projection parameters. Our method was evaluated with a number of experimental data, and the results exhibit an improved alignment accuracy comparable with current fiducial marker alignment and subsequent higher resolution of tomography.


Assuntos
Tomografia com Microscopia Eletrônica/métodos , Algoritmos , Animais , Cavéolas/ultraestrutura , Centríolos/ultraestrutura , Marcadores Fiduciais , Hepatócitos/ultraestrutura , Processamento de Imagem Assistida por Computador , Camundongos , Mitocôndrias Hepáticas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa