RESUMO
The generation, control and transfer of triplet excitons in molecular and hybrid systems is of great interest owing to their long lifetime and diffusion length in both solid-state and solution phase systems, and to their applications in light emission1, optoelectronics2,3, photon frequency conversion4,5 and photocatalysis6,7. Molecular triplet excitons (bound electron-hole pairs) are 'dark states' because of the forbidden nature of the direct optical transition between the spin-zero ground state and the spin-one triplet levels8. Hence, triplet dynamics are conventionally controlled through heavy-metal-based spin-orbit coupling9-11 or tuning of the singlet-triplet energy splitting12,13 via molecular design. Both these methods place constraints on the range of properties that can be modified and the molecular structures that can be used. Here we demonstrate that it is possible to control triplet dynamics by coupling organic molecules to lanthanide-doped inorganic insulating nanoparticles. This allows the classically forbidden transitions from the ground-state singlet to excited-state triplets to gain oscillator strength, enabling triplets to be directly generated on molecules via photon absorption. Photogenerated singlet excitons can be converted to triplet excitons on sub-10-picosecond timescales with unity efficiency by intersystem crossing. Triplet exciton states of the molecules can undergo energy transfer to the lanthanide ions with unity efficiency, which allows us to achieve luminescent harvesting of the dark triplet excitons. Furthermore, we demonstrate that the triplet excitons generated in the lanthanide nanoparticle-molecule hybrid systems by near-infrared photoexcitation can undergo efficient upconversion via a lanthanide-triplet excitation fusion process: this process enables endothermic upconversion and allows efficient upconversion from near-infrared to visible frequencies in the solid state. These results provide a new way to control triplet excitons, which is essential for many fields of optoelectronic and biomedical research.
RESUMO
Holography holds tremendous promise in applications such as immersive virtual reality and optical communications. With the emergence of optical metasurfaces, planar optical components that have the remarkable ability to precisely manipulate the amplitude, phase, and polarization of light on the subwavelength scale have expanded the potential applications of holography. However, the realization of metasurface-based full-color vectorial holography remains particularly challenging. Here, we report a general approach utilizing a modified Gerchberg-Saxton algorithm to achieve spatially aligned full-color display and incorporating wavelength information with an image compensation strategy. We combine the Pancharatnam-Berry phase and pairs of exceptional points to address the issue of redundant twin images that generally appear for the two orthogonal circular polarizations and to enable full polarization control of the vectorial field. Our results enable the realization of an asymmetric full-color vectorial meta-hologram, paving the way for the development of full-color display, complex beam generation, and secure data storage applications.
RESUMO
Since the proposal of the concept of spherical nucleic acids (SNAs) in 1996, numerous studies have focused on this topic and have achieved great advances. As a new delivery system for nucleic acids, SNAs have advantages over conventional deoxyribonucleic acid (DNA) nanostructures, including independence from transfection reagents, tolerance to nucleases, and lower immune reactions. The flexible structure of SNAs proves that various inorganic or organic materials can be used as the core, and different types of nucleic acids can be conjugated to realize diverse functions and achieve surprising and exciting outcomes. The special DNA nanostructures have been employed for immunomodulation, gene regulation, drug delivery, biosensing, and bioimaging. Despite the lack of rational design strategies, potential cytotoxicity, and structural defects of this technology, various successful examples demonstrate the bright and convincing future of SNAs in fields such as new materials, clinical practice, and pharmacy.
Assuntos
DNA , Ácidos Nucleicos , Ácidos Nucleicos/química , DNA/química , Humanos , Nanoestruturas/químicaRESUMO
Laser-scanning confocal hyperspectral microscopy is a powerful technique to identify the different sample constituents and their spatial distribution in three-dimensional (3D). However, it suffers from low imaging speed because of the mechanical scanning methods. To overcome this challenge, we propose a snapshot hyperspectral confocal microscopy imaging system (SHCMS). It combined coded illumination microscopy based on a digital micromirror device (DMD) with a snapshot hyperspectral confocal neural network (SHCNet) to realize single-shot confocal hyperspectral imaging. With SHCMS, high-contrast 160-bands confocal hyperspectral images of potato tuber autofluorescence can be collected by only single-shot, which is almost 5 times improvement in the number of spectral channels than previously reported methods. Moreover, our approach can efficiently record hyperspectral volumetric imaging due to the optical sectioning capability. This fast high-resolution hyperspectral imaging method may pave the way for real-time highly multiplexed biological imaging.
RESUMO
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Assuntos
Gelatina , Alicerces Teciduais , Humanos , Gelatina/química , Alicerces Teciduais/química , Engenharia Tecidual , Colágeno , Polietilenoglicóis , Materiais Biocompatíveis/químicaRESUMO
The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.
RESUMO
The COVID-19 pandemic has made assessing vaccine efficacy more challenging. Besides neutralizing antibody assays, systems vaccinology studies use omics technology to reveal immune response mechanisms and identify gene signatures in human peripheral blood mononuclear cells (PBMCs). However, due to their low proportion in PBMCs, profiling the immune response signatures of dendritic cells (DCs) is difficult. Here, we develop a predictive model for evaluating early immune responses in dendritic cells. We establish a THP-1-derived dendritic cell (TDDC) model and stimulate their maturation in vitro with an optimal dose of attenuated yellow fever 17D (YF-17D). Transcriptomic analysis reveals that type I interferon (IFN-I)-induced immunity plays a key role in dendritic cells. IFN-I regulatory biomarkers (IRF7, SIGLEC1) and IFN-I-inducible biomarkers (IFI27, IFI44, IFIT1, IFIT3, ISG15, MX1, OAS2, OAS3) are identified and validated in vitro and in vivo. Furthermore, we apply this TDDC approach to various types of vaccines, providing novel insights into their early immune response signatures and their heterogeneity in vaccine recipients. Our findings suggest that a standardizable TDDC model is a promising predictive approach to assessing early immunity in DCs. Further research into vaccine efficacy assessment approaches on various types of immune cells could lead to a systemic regimen for vaccine development in the future.
Assuntos
Células Dendríticas , Vacinação , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Vacinação/métodos , Interferon Tipo I/metabolismo , Interferon Tipo I/imunologia , Células THP-1 , COVID-19/imunologia , COVID-19/prevenção & controle , Animais , SARS-CoV-2/imunologia , Biomarcadores , Vacinas contra COVID-19/imunologia , Perfilação da Expressão Gênica , Camundongos , Transcriptoma , Vacina contra Febre Amarela/imunologiaRESUMO
Long-lasting radioluminescence scintillators have recently attracted substantial attention from both research and industrial communities, primarily due to their distinctive capabilities of converting and storing X-ray energy. However, determination of energy-conversion kinetics in these nanocrystals remains unexplored. Here we present a strategy to probe and unveil energy-funneling kinetics in NaLuF4:Mn2+/Gd3+ nanocrystal sublattices through Gd3+-driven microenvironment engineering and Mn2+-mediated radioluminescence profiling. Our photophysical studies reveal effective control of energy-funneling kinetics and demonstrate the tunability of electron trap depth ranging from 0.66 to 0.96â eV, with the corresponding trap density varying between 2.38×105 and 1.34×107â cm-3. This enables controlled release of captured electrons over durations spanning from seconds to 30â days. It allows tailorable emission wavelength within the range of 520-580â nm and fine-tuning of thermally-stimulated temperature between 313-403â K. We further utilize these scintillators to fabricate high-density, large-area scintillation screens that exhibit a 6-fold improvement in X-ray sensitivity, 22 lp/mm high-resolution X-ray imaging, and a 30-day-long optical memory. This enables high-contrast imaging of injured mice through fast thermally-stimulated radioluminescence readout. These findings offer new insights into the correlation of radioluminescence dynamics with energy-funneling kinetics, thereby contributing to the advancement of high-energy nanophotonic applications.
RESUMO
Bumblebees are essential pollinators of wild-flowering plants and crops. It is noticed that regulating the gut microorganisms of bumblebees is of great significance for the maintenance of bumblebee health and disease treatment. Additionally, social bees are used as models to study regulatory control methods of gut bacteria in vivo. However, these methods lack precision and are not studied in bumblebees. In this study, nanotransducers are used for wireless spatiotemporal tuning of engineered bacteria in bumblebees. These nanotransducers are designed as 1D chains with smooth surfaces for easy transport in vivo, and temperature-controlled engineered bacteria colonize the guts of microbial-free bumblebees. Thermal production in the bumblebee gut is achieved using magnetothermal and photothermal methods in response to nanotransducers, resulting in significant target protein upregulation in engineered bacteria in the bumblebee gut. This advanced technology enables the precise control of engineered bacteria in the bumblebee gut. It also lays the foundation for the treatment of bumblebee intestinal parasitic diseases and the elimination of pesticide residues.
Assuntos
Bactérias , Produtos Agrícolas , Abelhas , AnimaisRESUMO
Quantum dot (QD) solids are an emerging platform for developing a range of optoelectronic devices. Thus, understanding exciton dynamics is essential towards developing and optimizing QD devices. Here, using transient absorption microscopy, we reveal the initial exciton dynamics in QDs with femtosecond timescales. We observe high exciton diffusivity (~102 cm2 s-1) in lead chalcogenide QDs within the first few hundred femtoseconds after photoexcitation followed by a transition to a slower regime (~10-1-1 cm2 s-1). QD solids with larger interdot distances exhibit higher initial diffusivity and a delayed transition to the slower regime, while higher QD packing density and heterogeneity accelerate this transition. The fast transport regime occurs only in materials with exciton Bohr radii much larger than the QD sizes, suggesting the transport of delocalized excitons in this regime and a transition to slower transport governed by exciton localization. These findings suggest routes to control the optoelectronic properties of QD solids.
Assuntos
Pontos Quânticos , Compostos de SelênioRESUMO
Clusters combine the advantages of organic molecules and inorganic nanomaterials, which are promising alternatives for optoelectronic applications. Nonetheless, recently emerged cluster light-emitting diodes require further excited state optimization of cluster emitters, especially to reduce population of the cluster-centered triplet quenching state (3 CC). Here we report that redox-active ligands enhance reverse intersystem crossing (RISC) of Cu4 I4 cluster for triplet-to-singlet conversion, and thermally activated delayed fluorescence (TADF) host can provide an external RISC channel. It indicates that the complementarity between TADF host and cluster in RISC transitions gives rise to 100 % triplet conversion efficiency and complete singlet exciton convergence, rendering 100-fold increased singlet radiation rate constant and tenfold decreased triplet non-radiation rate constant. We achieve a photoluminescence quantum yield of 99 % and a record external quantum efficiency of 29.4 %.
RESUMO
Chemotherapy can induce toxicity in the central and peripheral nervous systems and result in chronic adverse reactions that impede continuous treatment and reduce patient quality of life. There is a current lack of research to predict, identify, and offset drug-induced neurotoxicity. Rapid and accurate assessment of potential neuropathy is crucial for cost-effective diagnosis and treatment. Here we report dynamic near-infrared upconversion imaging that allows intraneuronal transport to be traced in real time with millisecond resolution, but without photobleaching or blinking. Drug-induced neurotoxicity can be screened prior to phenotyping, on the basis of subtle abnormalities of kinetic characteristics in intraneuronal transport. Moreover, we demonstrate that combining the upconverting nanoplatform with machine learning offers a powerful tool for mapping chemotherapy-induced peripheral neuropathy and assessing drug-induced neurotoxicity.
Assuntos
Transporte Biológico/fisiologia , Substâncias Luminescentes/química , Nanopartículas Metálicas/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/metabolismo , Animais , Antineoplásicos/efeitos adversos , Fluoretos/química , Gânglios Espinais/citologia , Neurônios/efeitos dos fármacos , Paclitaxel/efeitos adversos , Ratos Sprague-Dawley , Máquina de Vetores de Suporte , Túlio/química , Vincristina/efeitos adversos , Itérbio/química , Ítrio/químicaRESUMO
Cargo transport along axons, a physiological process mediated by motor proteins, is essential for neuronal function and survival. A current limitation in the study of axonal transport is the lack of a robust imaging technique with a high spatiotemporal resolution to visualize and quantify the movement of motor proteins in real-time and in different depth planes. Herein, we present a dynamic imaging technique that fully exploits the characteristics of upconversion nanoparticles. This technique can be used as a microscopic probe for the quantitative inâ situ tracking of retrograde transport neurons with single-particle resolution in multilayered cultures. This study may provide a powerful tool to reveal dynamic neuronal activity and intra-axonal transport function as well as any associated neurodegenerative diseases resulting from mutation or impairment in the axonal transport machinery.
Assuntos
Nanopartículas Metálicas/química , Proteínas Motores Moleculares/metabolismo , Neurônios/metabolismo , Animais , Axônios/química , Axônios/metabolismo , Encéfalo/metabolismo , Células Cultivadas , Reprogramação Celular , Dineínas/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Raios Infravermelhos , Camundongos , Microscopia de Fluorescência , Neurônios/citologia , Transporte Proteico , RatosRESUMO
A new class of lanthanide-doped upconversion nanoparticles are presented that are without Yb3+ or Nd3+ sensitizers in the host lattice. In erbium-enriched core-shell NaErF4 :Tm (0.5â mol %)@NaYF4 nanoparticles, a high degree of energy migration between Er3+ ions occurs to suppress the effect of concentration quenching upon surface coating. Unlike the conventional Yb3+ -Er3+ system, the Er3+ ion can serve as both the sensitizer and activator to enable an effective upconversion process. Importantly, an appropriate doping of Tm3+ has been demonstrated to further enhance upconversion luminescence through energy trapping. This endows the resultant nanoparticles with bright red (about 700-fold enhancement) and near-infrared luminescence that is achievable under multiple excitation wavelengths. This is a fundamental new pathway to mitigate the concentration quenching effect, thus offering a convenient method for red-emitting upconversion nanoprobes for biological applications.
RESUMO
Drug toxicity is a long-standing concern of modern medicine. A typical anti-pain/fever drug paracetamol often causes hepatotoxicity due to peroxynitrite ONOO- . Conventional blood tests fail to offer real-time unambiguous visualization of such hepatotoxicity inâ vivo. Here we report a luminescent approach to evaluate acute hepatotoxicity inâ vivo by chromophore-conjugated upconversion nanoparticles. Upon injection, these nanoprobes mainly accumulate in the liver and the luminescence of nanoparticles remains suppressed owing to energy transfer to the chromophore. ONOO- can readily bleach the chromophore and thus recover the luminescence, the presence of ONOO- in the liver leads to fast restoring of the near-infrared emission. Taking advantages of the high tissue-penetration capability of near-infrared excitation/emission, these nanoprobes achieve real-time monitoring of hepatotoxicity in living animals, thereby providing a convenient screening strategy for assessing hepatotoxicity of synthetic drugs.
RESUMO
Growing interest in lanthanide-doped nanoparticles for biological and medical uses has brought particular attention to their safety concerns. However, the intrinsic toxicity of this new class of optical nanomaterials in biological systems has not been fully evaluated. In this work, we systematically evaluate the long-term cytotoxicity of lanthanide-doped nanoparticles (NaGdF4 and NaYF4) to HeLa cells by monitoring cell viability (mitochondrial activity), adenosine triphosphate (ATP) level, and cell membrane integrity (lactate dehydrogenase release), respectively. Importantly, we find that ligand-free lanthanide-doped nanoparticles induce intracellular ATP deprivation of HeLa cells, resulting in a significant decrease in cell viability after exposure for 7 days. We attribute the particle-induced cell death to two distinct cell death pathways, autophagy and apoptosis, which are primarily mediated via the interaction between the nanoparticle and the phosphate group of cellular ATP. The understanding gained from the investigation of cytotoxicity associated with lanthanide-doped nanoparticles provides keen insights into the safe use of these nanoparticles in biological systems.
Assuntos
Trifosfato de Adenosina/metabolismo , Elementos da Série dos Lantanídeos/farmacologia , Nanopartículas Metálicas/química , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Elementos da Série dos Lantanídeos/química , Relação Estrutura-AtividadeRESUMO
Development of highly sensitive and selective sensing systems of divalent zinc ion (Zn(2+)) in organisms has been a growing interest in the past decades owing to its pivotal role in cellular metabolism, apoptosis, and neurotransmission. Herein, we report the rational design and synthesis of a Zn(2+) fluorescent-based probe by assembling lanthanide-doped upconversion nanoparticles (UCNPs) with chromophores. Specifically, upconversion luminescence (UCL) can be effectively quenched by the chromophores on the surface of nanoparticles via a fluorescence resonant energy transfer (FRET) process and subsequently recovered upon the addition of Zn(2+), thus allowing for quantitative monitoring of Zn(2+). Importantly, the sensing system enables detection of Zn(2+) in real biological samples. We demonstrate that this chromophore-UCNP nanosystem is capable of implementing an efficient in vitro and in vivo detection of Zn(2+) in mouse brain slice with Alzheimer's disease and zebrafish, respectively.
Assuntos
Corantes/química , Nanopartículas , Zinco/análise , Linhagem Celular Tumoral , Humanos , Técnicas In VitroRESUMO
Composite heteronanostructures hold promise for high photocatalytic efficiency for water splitting and the degradation of organic pollutants. However, their photocatalytic activity under broadband excitation has been challenging, until now.
RESUMO
Photovoltaic (PV) technologies for solar energy conversion represent promising routes to green and renewable energy generation. Despite relevant PV technologies being available for more than half a century, the production of solar energy remains costly, largely owing to low power conversion efficiencies of solar cells. The main difficulty in improving the efficiency of PV energy conversion lies in the spectral mismatch between the energy distribution of photons in the incident solar spectrum and the bandgap of a semiconductor material. In recent years, luminescent materials, which are capable of converting a broad spectrum of light into photons of a particular wavelength, have been synthesized and used to minimize the losses in the solar-cell-based energy conversion process. In this review, we will survey recent progress in the development of spectral converters, with a particular emphasis on lanthanide-based upconversion, quantum-cutting and down-shifting materials, for PV applications. In addition, we will also present technical challenges that arise in developing cost-effective high-performance solar cells based on these luminescent materials.
RESUMO
The enthusiasm for research on lanthanide-doped upconversion nanoparticles is driven by both a fundamental interest in the optical properties of lanthanides embedded in different host lattices and their promise for broad applications ranging from biological imaging to photodynamic therapy. Despite the considerable progress made in the past decade, the field of upconversion nanoparticles has been hindered by significant experimental challenges associated with low upconversion conversion efficiencies. Recent experimental and theoretical studies on upconversion nanoparticles have, however, led to the development of several effective approaches to enhancing upconversion luminescence, which could have profound implications for a range of applications. Herein we present the underlying principles of controlling energy transfer through lanthanide doping, overview the major advances and key challenging issues in improving upconversion luminescence, and consider the likely directions of future research in the field.