Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 280: 116507, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38838465

RESUMO

Triclosan (TCS) is a broad-spectrum antibiotic widely used in various personal care products. Research has found that exposure to TCS can cause toxic effects on organisms including neurotoxicity, cardiotoxicity, disorders of lipid metabolism, and abnormal vascular development, and the corresponding toxic mechanisms are gradually delving into the level of abnormal expression of miRNA regulating gene expression. Although the downstream mechanism of TCS targeting miRNA abnormal expression to induce toxicity is gradually improving, its upstream mechanism is still in a fog. Starting from the abnormal expression data of circRNA in zebrafish larvae induced by TCS, this study conducted a hierarchical analysis of the expression levels of all circRNAs, differential circRNAs, and trend circRNAs, and identified 29 key circRNA events regulating miRNA abnormal expression. In combination with GO and KEGG, the effects of TCS exposure were analyzed from the function and signaling pathway of the corresponding circRNA host gene. Furthermore, based on existing literature evidence about the biological toxicity induced by TCS targeting miRNA as data support, a competing endogenous RNAs (ceRNA) network characterizing the regulatory relationship between circRNA and miRNA was constructed and optimized. Finally, a comprehensive Adverse Outcome Pathway (AOP) framework of multiple levels of events including circRNA, miRNA, mRNA, pathway, and toxicity endpoints was established to systematically elucidate the toxic mechanism of TCS. Moreover, the rationality of the AOP framework was verified from the expression level of miRNA and adverse outcomes such as neurotoxicity, cardiotoxicity, oxidative stress, and inflammatory response by knockdown of circRNA48. This paper not only provides the key circRNA events for exploring the upstream mechanism of miRNA regulating gene expression but also provides an AOP framework for comprehensively demonstrating the toxicity mechanism of TCS on zebrafish, which is a theoretical basis for subsequent hazard assessment and prevention and control of TCS.


Assuntos
MicroRNAs , RNA Circular , Triclosan , Peixe-Zebra , Animais , Peixe-Zebra/genética , RNA Circular/genética , MicroRNAs/genética , Triclosan/toxicidade , Rotas de Resultados Adversos , Poluentes Químicos da Água/toxicidade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Larva/efeitos dos fármacos , Larva/genética
2.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38256002

RESUMO

The domains of unknown function (DUF) superfamilies contain proteins with conserved amino acid sequences without known functions. Among them, DUF668 was indicated widely involving the stress response of plants. However, understanding ZoDUF668 is still lacking. Here, 12 ZoDUF668 genes were identified in ginger by the bioinformatics method and unevenly distributed on six chromosomes. Conserved domain analysis showed that members of the same subfamily had similar conserved motifs and gene structures. The promoter region of ZoDUF668s contained the light, plant hormone and stress-responsive elements. The prediction of miRNA targeting relationship showed that nine ginger miRNAs targeted four ZoDUF668 genes through cleavage. The expression patterns of 12 ZoDUF668 genes under biotic and abiotic stress were analyzed using RT-qPCR. The results showed that the expression of seven ZoDUF668 genes was significantly downregulated under Fusarium solani infection, six ZoDUF668 genes were upregulated under cold stress, and five ZoDUF668 genes were upregulated under waterlogging stress. These results indicate that the ZoDUF668 gene has different expression patterns under different stress conditions. This study provides excellent candidate genes and provides a reference for stress-resistance research in ginger.


Assuntos
Fusariose , MicroRNAs , Zingiber officinale , Zingiber officinale/genética , Sequência de Aminoácidos , Resposta ao Choque Frio/genética , Biologia Computacional , MicroRNAs/genética
3.
Small ; 19(45): e2303414, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431206

RESUMO

Collagen-based hydrogels have a significant impact on wound healing, but they suffer from structural instability and bacterial invasion in infected wounds. Here, electrospun nanofibers of esterified hyaluronan (HA-Bn/T) are developed to immobilize the hydrophobic antibacterial drug tetracycline by π-π stacking interaction. Dopamine-modified hyaluronan and HA-Bn/T are employed simultaneously to stabilize the structure of collagen-based hydrogel by chemically interweaving the collagen fibril network and decreasing the rate of collagen degradation. This renders it injectable for in situ gelation, with suitable skin adhesion properties and long-lasting drug release capability. This hybridized interwoven hydrogel promotes the proliferation and migration of L929 cells and vascularization in vitro. It presents satisfactory antibacterial ability against Staphylococcus aureus and Escherichia coli. The structure also retains the functional protein environment provided by collagen fiber, inhibits the bacterial environment of infected wounds, and modulates local inflammation, resulting in neovascularization, collagen deposition, and partial follicular regeneration. This strategy offers a new solution for infected wound healing.


Assuntos
Ácido Hialurônico , Hidrogéis , Hidrogéis/química , Ácido Hialurônico/química , Adesivos , Cicatrização , Colágeno/farmacologia , Tetraciclina , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Escherichia coli
4.
J Nanobiotechnology ; 21(1): 2, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36593514

RESUMO

BACKGROUND: Silica nanoparticles (SiNPs) have been demonstrated to have beneficial effects on plant growth and development, especially under biotic and abiotic stresses. However, the mechanisms of SiNPs-mediated plant growth strengthening are still unclear, especially under field condition. In this study, we evaluated the effect of SiNPs on the growth and sugar and hormone metabolisms of wheat in the field. RESULTS: SiNPs increased tillers and elongated internodes by 66.7% and 27.4%, respectively, resulting in a larger biomass. SiNPs can increase the net photosynthetic rate by increasing total chlorophyll contents. We speculated that SiNPs can regulate the growth of leaves and stems, partly by regulating the metabolisms of plant hormones and soluble sugar. Specifically, SiNPs can increase auxin (IAA) and fructose contents, which can promote wheat growth directly or indirectly. Furthermore, SiNPs increased the expression levels of key pathway genes related to soluble sugars (SPS, SUS, and α-glucosidase), chlorophyll (CHLH, CAO, and POR), IAA (TIR1), and abscisic acid (ABA) (PYR/PYL, PP2C, SnRK2, and ABF), whereas the expression levels of genes related to CTKs (IPT) was decreased after SiNPs treatment. CONCLUSIONS: This study shows that SiNPs can promote wheat growth and provides a theoretical foundation for the application of SiNPs in field conditions.


Assuntos
Nanopartículas , Triticum , Triticum/metabolismo , Dióxido de Silício , Clorofila , Açúcares , Hormônios
5.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139237

RESUMO

Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.


Assuntos
Capsicum , Capsicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Genes de Plantas , Família Multigênica , Regulação da Expressão Gênica de Plantas , Filogenia
6.
Int J Mol Sci ; 24(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37762550

RESUMO

Unknown functional domain (DUF) proteins constitute a large number of functionally uncharacterized protein families in eukaryotes. DUF724s play crucial roles in plants. However, the insight understanding of wheat TaDUF724s is currently lacking. To explore the possible function of TaDUF724s in wheat growth and development and stress response, the family members were systematically identified and characterized. In total, 14 TaDUF724s were detected from a wheat reference genome; they are unevenly distributed across the 11 chromosomes, and, according to chromosome location, they were named TaDUF724-1 to TaDUF724-14. Evolution analysis revealed that TaDUF724s were under negative selection, and fragment replication was the main reason for family expansion. All TaDUF724s are unstable proteins; most TaDUF724s are acidic and hydrophilic. They were predicted to be located in the nucleus and chloroplast. The promoter regions of TaDUF724s were enriched with the cis-elements functionally associated with growth and development, as well as being hormone-responsive. Expression profiling showed that TaDUF724-9 was highly expressed in seedings, roots, leaves, stems, spikes and grains, and strongly expressed throughout the whole growth period. The 12 TaDUF724 were post-transcription regulated by 12 wheat MicroRNA (miRNA) through cleavage and translation. RT-qPCR showed that six TaDUF724s were regulated by biological and abiotic stresses. Conclusively, TaDUF724s were systematically analyzed using bioinformatics methods, which laid a theoretical foundation for clarifying the function of TaDUF724s in wheat.


Assuntos
Genoma de Planta , Triticum , Triticum/metabolismo , Família Multigênica , Biologia Computacional/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Perfilação da Expressão Gênica/métodos
7.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108186

RESUMO

Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π-π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial.


Assuntos
Antineoplásicos , Nanofibras , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Ácido Hialurônico/química , Nanofibras/química , Doxorrubicina/farmacologia , Doxorrubicina/química
8.
Molecules ; 28(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36615375

RESUMO

The detection of nitrophenolic explosives is important in counterterrorism and environmental protection, but it is still a challenge to identify the nitroaromatic compounds among those with a similar structure. Herein, a simple tetraphenylethene (TPE) derivative with aggregation-induced emission (AIE) characteristics was synthesized and used as a fluorescent sensor for the detection of nitrophenolic explosives (2, 4, 6-trinitrophenol, TNP and 2, 4-dinitrophenol, DNP) in water solution and in a solid state with a high selectivity. Meanwhile, it was found that only hydroxyl containing nitrophenolic explosives caused obvious fluorescence quenching. The sensing mechanism was investigated by using fluorescence titration and 1H NMR spectra. This simple AIE-active probe can potentially be applied to the construction of portable detection devices for explosives.


Assuntos
Substâncias Explosivas , Corantes Fluorescentes/química , Espectroscopia de Ressonância Magnética , Espectrometria de Fluorescência
9.
J Neurosci Res ; 96(1): 138-150, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28609588

RESUMO

Diabetic encephalopathy (DE), one of the most prevalent chronic complications of diabetes mellitus, is short of effective prevention and formidable therapeutic strategies. The aim of the present study is to reveal the imbalance of tryptophan (Trp) and its metabolites in streptozotocin (STZ)-induced experimental DE rats to underscore their critical values in clinical diagnosis of the disease. For this purpose, we first developed an accurate and appropriate simultaneous method for measuring Trp and its metabolites using liquid chromatography-tandem mass spectrometry, which was in accordance with the requirements of biological sample analysis. Secondly, a single STZ intraperitoneal injection was administered to male Sprague-Dawley rats, and their cognitive function was detected by Morris water maze tests. Cerebrospinal fluid (CSF), serum, and brain tissue were then collected for the determination of Trp and its metabolites. Compared with age-matched control rats, the levels of neuroprotective serotonin decreased significantly in the samples of cortices, hippocampi, striatum, CSF, and serums in the STZ-induced DE rats, while the levels of neurotoxic 3-hydroxykynurenine increased significantly. Moreover, analogous changes of both compounds were found in the central nervous system and peripheral blood of the STZ-induced DE rats. In conclusion, we established a quantitative method for the simultaneous detection of Trp and its metabolites, and we also present a critical elucidation of the nervous system dysfunction in DE.


Assuntos
Encefalopatias/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neurotransmissores/metabolismo , Triptofano/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Biomarcadores/metabolismo , Encéfalo/patologia , Encefalopatias/patologia , Diabetes Mellitus Experimental/patologia , Masculino , Neurotransmissores/análise , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem/métodos , Triptofano/análise
10.
Can J Physiol Pharmacol ; 93(11): 1007-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26426748

RESUMO

Diabetic encephalopathy (DE) is one of the most prevalent chronic complications of diabetes mellitus (DM), with neither effective prevention nor proven therapeutic regimen. This study aims to uncover the potential dysregulation pattern of the neurotransmitters in a rat model of streptozotocin (STZ)-induced experimental DE. For that purpose, male Sprague-Dawley (SD) rats were treated with a single intraperitoneal injection of STZ. Cognitive performance was detected with the Morris water maze (MWM) test. Serum, cerebrospinal fluid (CSF), and brain tissues were collected to measure the levels of neurotransmitters. Compared with the control rats, the acetylcholine (ACh) levels in serum, CSF, hippocampus, and cortex were all significantly down-regulated as early as 6 weeks in the STZ treatment group. In contrast, the glutamate (Glu) levels were decreased in CSF and the hippocampus, but unaffected in the serum and cortex of STZ-treated rats. As for γ-aminobutyric acid (GABA), it was down-regulated in serum, but up-regulated in CSF, hippocampus, and the cortex in the STZ-treated group. The mRNA expressions of neurotransmitter-related rate limiting enzymes (including AChE, GAD1, and GAD2) and pro-inflammatory cytokines (including IL-1ß and TNF-α) were all increased in the DE rats. Our data suggest that DM induces isoform-dependent and tissue-specific neurotransmitter abnormalities, and that neuroinflammation may underlay the nervous system dysfunction observed in the progression of DE.


Assuntos
Encefalopatias/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Progressão da Doença , Neurotransmissores/metabolismo , Animais , Encéfalo/patologia , Encefalopatias/patologia , Cromatografia Líquida/métodos , Diabetes Mellitus Experimental/patologia , Masculino , Espectrometria de Massas/métodos , Neurotransmissores/análise , Ratos , Ratos Sprague-Dawley
11.
Respirology ; 19(2): 231-238, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24383720

RESUMO

BACKGROUND AND OBJECTIVE: This study, in a predominantly Chinese population, investigated the efficacy and safety of a once-daily (o.d.) inhaled ultra-long-acting ß2 -agonist indacaterol for the treatment of moderate-to-severe chronic obstructive pulmonary disease (COPD). METHODS: This is a 26-week, double-blind study on randomized patients who received indacaterol 150 µg or 300 µg or placebo o.d. The primary variable was trough forced expiratory volume in 1 s (FEV1 , average of 23 h 10 min and 23 h 45 min post-dose values) at Week 12. Health status (St George's Respiratory Questionnaire, SGRQ), dyspnoea (transition dyspnoea index, TDI) and safety were evaluated over 26 weeks. RESULTS: Of the 563 patients randomized, 561 (89.8% Chinese) received treatment and 482 completed. At Week 12, trough FEV1 improved significantly for indacaterol 150 and 300 µg versus placebo (1.32, 1.29 vs 1.17; P < 0.001 for both comparisons), with differences exceeding the pre-specified minimal clinically important difference of 0.12 L. At Week 26, TDI score was superior to placebo for indacaterol 150 and 300 µg (0.82, 1.15; P < 0.01), as was the percentage of patients with a clinically relevant improvement (≥1 point) (74.1%, 78.6% vs 55.5%; P < 0.05). Both doses provided ≥4-point improvements from baseline in SGRQ score at Week 26 that were numerically greater than placebo (unadjusted means: -9.6, -8.8 vs -7.0), with a similar pattern in percentage of patients with clinically relevant improvements in SGRQ score (65.0%, 61.5% vs 60.6%). Incidences of adverse events were comparable across treatment groups. CONCLUSIONS: Indacaterol delivered effective bronchodilation with significant improvements in breathlessness and health status in this predominantly Chinese population.


Assuntos
Nível de Saúde , Indanos/administração & dosagem , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Quinolonas/administração & dosagem , Idoso , China/epidemiologia , Relação Dose-Resposta a Droga , Método Duplo-Cego , Esquema de Medicação , Feminino , Seguimentos , Volume Expiratório Forçado/efeitos dos fármacos , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Inquéritos e Questionários , Fatores de Tempo , Resultado do Tratamento
12.
Nanomaterials (Basel) ; 14(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869575

RESUMO

In this work, flexible Cu2-xS films on nylon membranes are prepared by combining a simple hydrothermal synthesis and vacuum filtration followed by hot pressing. The films consist of Cu2S and Cu1.96S two phases with grain sizes from nano to submicron. Doping Se on the S site not only increases the Cu1.96S content in the Cu2-xS to increase carrier concentration but also modifies electronic structure, thereby greatly improves the electrical properties of the Cu2-xS. Specifically, an optimal composite film with a nominal composition of Cu2-xS0.98Se0.02 exhibits a high power factor of ~150.1 µW m-1 K-2 at 300 K, which increases by ~138% compared to that of the pristine Cu2-xS film. Meanwhile, the composite film shows outstanding flexibility (~97.2% of the original electrical conductivity is maintained after 1500 bending cycles with a bending radius of 4 mm). A four-leg flexible thermoelectric (TE) generator assembled with the optimal film generates a maximum power of 329.6 nW (corresponding power density of 1.70 W m-2) at a temperature difference of 31.1 K. This work provides a simple route to the preparation of high TE performance Cu2-xS-based films.

13.
Chemosphere ; 352: 141395, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342143

RESUMO

Triclosan (TCS), a prevalent contaminant in aquatic ecosystems, has been identified as a potential threat to both aquatic biota and human health. Despite its widespread presence, research into the immunotoxic effects of TCS on aquatic organisms is limited, and the underlying mechanisms driving these effects remain largely unexplored. Herein, we investigated the developmental and immune toxicities of environmentally relevant concentrations of TCS in zebrafish, characterized by morphological anomalies, histopathological impairments, and fluctuations in cytological differentiation and biomarkers following both acute (from 6 to 72/120 hpf) and chronic exposure periods (from 30 to 100 dpf). Specifically, acute exposure to TCS resulted in a significant increase in innate immune cells, contrasted by a marked decrease in T cells. Furthermore, we observed that TCS exposure elicited oxidative stress and a reduction in global m6A levels, alongside abnormal expressions within the m6A modification enzyme system in zebrafish larvae. Molecular docking studies suggested that mettl3 might be a target molecule for TCS interaction. Intriguingly, the knock-down of mettl3 mirrored the effects of TCS exposure, adversely impacting the growth and development of zebrafish, as well as the differentiation of innate immune cells. These results provide insights into the molecular basis of TCS-induced immunotoxicity through m6A-RNA epigenetic modification and aid in assessing its ecological risks, informing strategies for disease prevention linked to environmental contaminants.


Assuntos
Triclosan , Poluentes Químicos da Água , Animais , Humanos , Triclosan/toxicidade , Triclosan/metabolismo , Peixe-Zebra/metabolismo , Regulação para Baixo , Metilação de RNA , Ecossistema , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
14.
ACS Appl Mater Interfaces ; 16(20): 26417-26427, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38720165

RESUMO

Recent studies have shown that silver selenide is a promising thermoelectric material at room temperature. Herein, flexible films with a nominal composition of (Ag1-xCux)2Se are prepared by a simple and efficient one-pot method combined with vacuum-assisted filtration and hot pressing. The thermoelectric properties of the films are regulated by both cationic doping and a dual-phase strategy via a wet chemical method. As the x increases, not only Cu is doped into the Ag2Se, but different new phases (CuAgSe and/or CuSe2) also appear. The (Ag1-xCux)2Se film with x = 0.02 composed of Cu-doped Ag2Se and CuAgSe shows a high PF of ∼2540 µW m-1 K-2 (ZT ∼ 0.90) and outstanding flexibility at room temperature. The high thermoelectric properties of the film are due to the effect of Cu doping and the CuAgSe phase, including the increase in electrical conductivity caused by doping, the enhanced phonon scattering at the Ag2Se/CuAgSe interface, and the interaction between the energy filtering effect and the doping effect. In addition to the high output performance (PDmax = 28.08 W m-2, ΔT = 32.2 K), the flexible device assembled with the (Ag0.98Cu0.02)2Se film also has potential applications as a temperature sensor.

15.
Plant Physiol Biochem ; 207: 108392, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301328

RESUMO

Growth-regulating factors (GRFs) play crucial roles in plant growth, development, hormone signaling, and stress response. Despite their significance, the roles of GRFs in ginger remain largely unknown. Herein, 31 ginger ZoGRFs were identified and designated as ZoGRF1-ZoGRF31 according to their phylogenetic relationships. All ZoGRFs were characterized as unstable, hydrophilic proteins, with 29 predicted to be located in the nucleus. Functional cis-elements related to growth and development were enriched in ZoGRF's promoter regions. RNA-seq and RT-qPCR analysis revealed that ZoGRF12, ZoGRF24, and ZoGRF28 were highly induced in various growth and development stages, displaying differential regulation under waterlogging, chilling, drought, and salt stresses, indicating diverse expression patterns of ZoGRFs. Transient expression analysis in Nicotiana benthamiana indicated that overexpressing ZoGRF28 regulated the transcription levels of salicylic acid, jasmonic acid, and pattern-triggered immunity-related genes, increased chlorophyll content and contributed to reduced disease lesions and an increased net photosynthetic rate. This research lays the foundation for further understanding the biological roles of ZoGRFs.


Assuntos
Zingiber officinale , Zingiber officinale/genética , Filogenia , Fotossíntese , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Cell Death Discov ; 10(1): 237, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762523

RESUMO

Immunotherapy has now garnered significant attention as an essential component in cancer therapy during this new era. However, due to immune tolerance, immunosuppressive environment, tumor heterogeneity, immune escape, and other factors, the efficacy of tumor immunotherapy has been limited with its application to very small population size. Energy metabolism not only affects tumor progression but also plays a crucial role in immune escape. Tumor cells are more metabolically active and need more energy and nutrients to maintain their growth, which causes the surrounding immune cells to lack glucose, oxygen, and other nutrients, with the result of decreased immune cell activity and increased immunosuppressive cells. On the other hand, immune cells need to utilize multiple metabolic pathways, for instance, cellular respiration, and oxidative phosphorylation pathways to maintain their activity and normal function. Studies have shown that there is a significant difference in the energy expenditure of immune cells in the resting and activated states. Notably, competitive uptake of glucose is the main cause of impaired T cell function. Conversely, glutamine competition often affects the activation of most immune cells and the transformation of CD4+T cells into inflammatory subtypes. Excessive metabolite lactate often impairs the function of NK cells. Furthermore, the metabolite PGE2 also often inhibits the immune response by inhibiting Th1 differentiation, B cell function, and T cell activation. Additionally, the transformation of tumor-suppressive M1 macrophages into cancer-promoting M2 macrophages is influenced by energy metabolism. Therefore, energy metabolism is a vital factor and component involved in the reconstruction of the tumor immune microenvironment. Noteworthy and vital is that not only does the metabolic program of tumor cells affect the antigen presentation and recognition of immune cells, but also the metabolic program of immune cells affects their own functions, ultimately leading to changes in tumor immune function. Metabolic intervention can not only improve the response of immune cells to tumors, but also increase the immunogenicity of tumors, thereby expanding the population who benefit from immunotherapy. Consequently, identifying metabolic crosstalk molecules that link tumor energy metabolism and immune microenvironment would be a promising anti-tumor immune strategy. AMPK (AMP-activated protein kinase) is a ubiquitous serine/threonine kinase in eukaryotes, serving as the central regulator of metabolic pathways. The sequential activation of AMPK and its associated signaling cascades profoundly impacts the dynamic alterations in tumor cell bioenergetics. By modulating energy metabolism and inflammatory responses, AMPK exerts significant influence on tumor cell development, while also playing a pivotal role in tumor immunotherapy by regulating immune cell activity and function. Furthermore, AMPK-mediated inflammatory response facilitates the recruitment of immune cells to the tumor microenvironment (TIME), thereby impeding tumorigenesis, progression, and metastasis. AMPK, as the link between cell energy homeostasis, tumor bioenergetics, and anti-tumor immunity, will have a significant impact on the treatment and management of oncology patients. That being summarized, the main objective of this review is to pinpoint the efficacy of tumor immunotherapy by regulating the energy metabolism of the tumor immune microenvironment and to provide guidance for the development of new immunotherapy strategies.

17.
Nat Commun ; 15(1): 1488, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374253

RESUMO

The assembly of oligopeptide and polypeptide molecules can reconstruct various ordered advanced structures through intermolecular interactions to achieve protein-like biofunction. Here, we develop a "molecular velcro"-inspired peptide and gelatin co-assembly strategy, in which amphiphilic supramolecular tripeptides are attached to the molecular chain of gelatin methacryloyl via intra-/intermolecular interactions. We perform molecular docking and dynamics simulations to demonstrate the feasibility of this strategy and reveal the advanced structural transition of the co-assembled hydrogel, which brings more ordered ß-sheet content and 10-fold or more compressive strength improvement. We conduct transcriptome analysis to reveal the role of co-assembled hydrogel in promoting cell proliferation and chondrogenic differentiation. Subcutaneous implantation evaluation confirms considerably reduced inflammatory responses and immunogenicity in comparison with type I collagen. We demonstrate that bone mesenchymal stem cells-laden co-assembled hydrogel can be stably fixed in rabbit knee joint defects by photocuring, which significantly facilitates hyaline cartilage regeneration after three months. This co-assembly strategy provides an approach for developing cartilage regenerative biomaterials.


Assuntos
Cartilagem Articular , Cartilagem , Animais , Coelhos , Simulação de Acoplamento Molecular , Cartilagem/fisiologia , Hidrogéis/química , Materiais Biocompatíveis/química , Diferenciação Celular , Peptídeos , Conformação Proteica , Engenharia Tecidual , Condrogênese
18.
J Mater Chem B ; 12(9): 2282-2293, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38323909

RESUMO

Skin has a protein microenvironment dominated by functional collagen fibers, while oxidative stress caused by injury can greatly slow down the progress of wound healing. Here, methacrylated dopamine was incorporated into methacrylated silk fibroin molecule chains to develop an injectable hydrogel with photocuring properties for constructing an antioxidant skin protein microenvironment. This silk fibroin-based hydrogel (SF-g-SDA) showed good tensile and adhesion properties for adapting to the wound shape and skin movement, exhibited stable mechanical properties, good biodegradability and cytocompatibility, and promoted cell adhesion and vascularization in vitro. In addition, its phenolic hydroxyl-mediated antioxidant properties effectively protected cells from damage caused by oxidative stress and supported normal cellular life activities. In animal experiments, SF-g-SDA achieved better skin repair effects in comparison to commercial Tegaderm™ in vivo, showing its ability to accelerate wound healing, improve collagen deposition and alignment in newly fabricated tissues, and promote neovascularization and hair follicle formation. These experimental results indicated that the SF-g-SDA hydrogel is a promising wound dressing.


Assuntos
Fibroínas , Animais , Fibroínas/farmacologia , Antioxidantes/farmacologia , Hidrogéis/farmacologia , Cicatrização , Colágeno/metabolismo
19.
Front Sociol ; 8: 1096109, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304215

RESUMO

This review examines major bodies of literature, interrelated but usually considered separately, focused on work trajectories and their intersections with family dynamics through the life course. It begins with a consideration of the life course paradigm, which draws attention to the temporal dimensions of human lives, and recently developed analytic techniques that are well-suited to empirical investigation of life course transitions and trajectories over time. The review proceeds to examine empirical research on work career mobility (including both inter- and intra-generational mobility) measured as either trajectories of continuous outcomes or sequences of categorical outcomes, and their long-term consequences for socioeconomic attainment. Work-family trajectories are then addressed, focusing on the impacts of family on work, notably expressed in the motherhood wage penalty, and how family structure and processes affect long-term labor market outcomes. Research documents considerable heterogeneity in work-family dynamics over the life course across social groups with unequal resources. The review concludes with an assessment of the interplay of work and family trajectories studied longitudinally and makes recommendations for future research. It is argued that while extant studies of the work-family interface are compatible with, and sometimes deliberately reflect, a life course perspective, these bodies of research would benefit from more fully incorporating the life course principles of "agency" and "time and place".

20.
J Health Soc Behav ; : 221465231205266, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37904493

RESUMO

Whereas previous research shows that union membership is associated with improved health, static measurements have been used to test dynamic theories linking the two. We construct a novel measure of cumulative unionization, tracking individuals across their entire careers, to examine health consequences in older adulthood. We use data from the Panel Study of Income Dynamics (1970-2019) and predict self-rated health, functional limitations, and chronic health conditions in ages 60 to 79 using cumulative unionization measured during respondents' careers. Results from growth models show that unionized careers are associated with .25 SD to .30 SD improvements in health among older adults across all measures. Analyses of life course mechanisms reveal heterogeneous effects across unionization timing, age in older adulthood, and birth cohort. Moreover, subgroup analyses reveal unionization to partially, but not fully, ameliorate disparities based on privileged social positions. Our findings reveal a substantial and novel mechanism driving older adulthood health disparities.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa