Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 11(3): e1005097, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25807530

RESUMO

Here we demonstrate association of variants in the mitochondrial asparaginyl-tRNA synthetase NARS2 with human hearing loss and Leigh syndrome. A homozygous missense mutation ([c.637G>T; p.Val213Phe]) is the underlying cause of nonsyndromic hearing loss (DFNB94) and compound heterozygous mutations ([c.969T>A; p.Tyr323*] + [c.1142A>G; p.Asn381Ser]) result in mitochondrial respiratory chain deficiency and Leigh syndrome, which is a neurodegenerative disease characterized by symmetric, bilateral lesions in the basal ganglia, thalamus, and brain stem. The severity of the genetic lesions and their effects on NARS2 protein structure cosegregate with the phenotype. A hypothetical truncated NARS2 protein, secondary to the Leigh syndrome mutation p.Tyr323* is not detectable and p.Asn381Ser further decreases NARS2 protein levels in patient fibroblasts. p.Asn381Ser also disrupts dimerization of NARS2, while the hearing loss p.Val213Phe variant has no effect on NARS2 oligomerization. Additionally we demonstrate decreased steady-state levels of mt-tRNAAsn in fibroblasts from the Leigh syndrome patients. In these cells we show that a decrease in oxygen consumption rates (OCR) and electron transport chain (ETC) activity can be rescued by overexpression of wild type NARS2. However, overexpression of the hearing loss associated p.Val213Phe mutant protein in these fibroblasts cannot complement the OCR and ETC defects. Our findings establish lesions in NARS2 as a new cause for nonsyndromic hearing loss and Leigh syndrome.


Assuntos
Aspartato-tRNA Ligase/genética , Doença de Leigh/genética , Aminoacil-RNA de Transferência/genética , Adulto , Sequência de Aminoácidos/genética , Animais , Aspartato-tRNA Ligase/biossíntese , Surdez/genética , Surdez/patologia , Orelha Interna/metabolismo , Orelha Interna/patologia , Feminino , Fibroblastos , Expressão Gênica/genética , Predisposição Genética para Doença , Humanos , Doença de Leigh/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação de Sentido Incorreto/genética , Consumo de Oxigênio/genética , Linhagem
2.
Proc Natl Acad Sci U S A ; 111(38): E4033-42, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25192935

RESUMO

Variation in the intracellular percentage of normal and mutant mitochondrial DNAs (mtDNA) (heteroplasmy) can be associated with phenotypic heterogeneity in mtDNA diseases. Individuals that inherit the common disease-causing mtDNA tRNA(Leu(UUR)) 3243A>G mutation and harbor ∼10-30% 3243G mutant mtDNAs manifest diabetes and occasionally autism; individuals with ∼50-90% mutant mtDNAs manifest encephalomyopathies; and individuals with ∼90-100% mutant mtDNAs face perinatal lethality. To determine the basis of these abrupt phenotypic changes, we generated somatic cell cybrids harboring increasing levels of the 3243G mutant and analyzed the associated cellular phenotypes and nuclear DNA (nDNA) and mtDNA transcriptional profiles by RNA sequencing. Small increases in mutant mtDNAs caused relatively modest defects in oxidative capacity but resulted in sharp transitions in cellular phenotype and gene expression. Cybrids harboring 20-30% 3243G mtDNAs had reduced mtDNA mRNA levels, rounded mitochondria, and small cell size. Cybrids with 50-90% 3243G mtDNAs manifest induction of glycolytic genes, mitochondrial elongation, increased mtDNA mRNA levels, and alterations in expression of signal transduction, epigenomic regulatory, and neurodegenerative disease-associated genes. Finally, cybrids with 100% 3243G experienced reduced mtDNA transcripts, rounded mitochondria, and concomitant changes in nuclear gene expression. Thus, striking phase changes occurred in nDNA and mtDNA gene expression in response to the modest changes of the mtDNA 3243G mutant levels. Hence, a major factor in the phenotypic variation in heteroplasmic mtDNA mutations is the limited number of states that the nucleus can acquire in response to progressive changes in mitochondrial retrograde signaling.


Assuntos
DNA Mitocondrial , Epigênese Genética , Mitocôndrias , Mutação Puntual , RNA Mensageiro , Transcrição Gênica , Linhagem Celular Tumoral , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Glicólise/genética , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , Análise de Sequência de RNA , Transdução de Sinais/genética
3.
FASEB J ; 29(6): 2315-26, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25681462

RESUMO

Conventional T (Tcon) cells and Foxp3(+) T-regulatory (Treg) cells are thought to have differing metabolic requirements, but little is known of mitochondrial functions within these cell populations in vivo. In murine studies, we found that activation of both Tcon and Treg cells led to myocyte enhancer factor 2 (Mef2)-induced expression of genes important to oxidative phosphorylation (OXPHOS). Inhibition of OXPHOS impaired both Tcon and Treg cell function compared to wild-type cells but disproportionally affected Treg cells. Deletion of Pgc1α or Sirt3, which are key regulators of OXPHOS, abrogated Treg-dependent suppressive function and impaired allograft survival. Mef2 is inhibited by histone/protein deacetylase-9 (Hdac9), and Hdac9 deletion increased Treg suppressive function. Hdac9(-/-) Treg showed increased expression of Pgc1α and Sirt3, and improved mitochondrial respiration, compared to wild-type Treg cells. Our data show that key OXPHOS regulators are required for optimal Treg function and Treg-dependent allograft acceptance. These findings provide a novel approach to increase Treg function and give insights into the fundamental mechanisms by which mitochondrial energy metabolism regulates immune cell functions in vivo.


Assuntos
Metabolismo Energético/imunologia , Fatores de Transcrição Forkhead/imunologia , Sobrevivência de Enxerto/imunologia , Mitocôndrias/imunologia , Linfócitos T Reguladores/imunologia , Animais , Western Blotting , Metabolismo Energético/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Sobrevivência de Enxerto/genética , Histona Desacetilases/genética , Histona Desacetilases/imunologia , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/imunologia , Fatores de Transcrição MEF2/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sirtuína 3/genética , Sirtuína 3/imunologia , Sirtuína 3/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Fatores de Transcrição/metabolismo
4.
Biochim Biophys Acta ; 1822(6): 1019-29, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22306605

RESUMO

The m.3243A>G variant in the mitochondrial tRNA(Leu(UUR)) gene is a common mitochondrial DNA (mtDNA) mutation. Phenotypic manifestations depend mainly on the heteroplasmy, i.e. the ratio of mutant to normal mtDNA copies. A high percentage of mutant mtDNA is associated with a severe, life-threatening neurological syndrome known as MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes). MELAS is described as a neurovascular disorder primarily affecting the brain and blood vessels, but the pathophysiology of the disease is poorly understood. We developed a series of cybrid cell lines at two different mutant loads: 70% and 100% in the nuclear background of a neuroblastoma cell line (SH-SY5Y). We investigated the impact of the mutation on the metabolism and mitochondrial respiratory chain activity of the cybrids. The m.3243A>G mitochondrial mutation induced a metabolic switch towards glycolysis in the neuronal cells and produced severe defects in respiratory chain assembly and activity. We used two strategies to compensate for the biochemical defects in the mutant cells: one consisted of lowering the glucose content in the culture medium, and the other involved the addition of l-arginine. The reduction of glucose significantly shifted the 100% mutant cells towards the wild-type, reaching a 90% mutant level and restoring respiratory chain complex assembly. The addition of l-arginine, a nitric oxide (NO) donor, improved complex I activity in the mutant cells in which the defective NO metabolism had led to a relative shortage of NO. Thus, metabolically induced heteroplasmy shifting and l-arginine therapy may constitute promising therapeutic strategies against MELAS.


Assuntos
Arginina/farmacologia , DNA Mitocondrial/genética , Síndrome MELAS/metabolismo , Mitocôndrias/metabolismo , RNA de Transferência de Leucina/genética , Linhagem Celular Tumoral , Glucose/metabolismo , Glicólise , Humanos , Células Híbridas , Síndrome MELAS/genética , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Mutação , Neuroblastoma , Neurônios/metabolismo , RNA de Transferência de Leucina/metabolismo
5.
Free Radic Biol Med ; 188: 312-327, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35714845

RESUMO

Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes. These cell lines are immortal under permissive conditions (IFN-γ + serum at 32 °C) permitting expansion but return to normal myoblasts that can be differentiated into myotubes at 37 °C. With this system we were able to complement our Ant1 mutant studies by demonstrating that ANT2 is important for myoblast to myotube differentiation and myotube mitochondrial respiration. ANT2 is also important in the regulation of mitochondrial biogenesis and antioxidant defenses. ANT2 is also associated with increased oxidative stress response and modulation for Ca++ sequestration and activation of the mitochondrial permeability transition (mtPTP) pore during cell differentiation.


Assuntos
Translocador 2 do Nucleotídeo Adenina , Nucleotídeos de Adenina , Translocador 2 do Nucleotídeo Adenina/genética , Translocador 2 do Nucleotídeo Adenina/metabolismo , Nucleotídeos de Adenina/metabolismo , Animais , Camundongos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Desenvolvimento Muscular/genética
6.
Mol Genet Metab ; 96(4): 189-95, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19185523

RESUMO

Mitochondrial diseases have been shown to result from mutations in mitochondrial genes located in either the nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Mitochondrial OXPHOS complex I has 45 subunits encoded by 38 nuclear and 7 mitochondrial genes. Two male patients in a putative X-linked pedigree exhibiting a progressive neurodegenerative disorder and a severe muscle complex I enzyme defect were analyzed for mutations in the 38 nDNA and seven mtDNA encoded complex I subunits. The nDNA X-linked NDUFA1 gene (MWFE polypeptide) was discovered to harbor a novel missense mutation which changed a highly conserved glycine at position 32 to an arginine, shown to segregate with the disease. When this mutation was introduced into a NDUFA1 null hamster cell line, a substantial decrease in the complex I assembly and activity was observed. When the mtDNA of the patient was analyzed, potentially relevant missense mutations were observed in the complex I genes. Transmitochondrial cybrids containing the patient's mtDNA resulted in a mild complex I deficiency. Interestingly enough, the nDNA encoded MWFE polypeptide has been shown to interact with various mtDNA encoded complex I subunits. Therefore, we hypothesize that the novel G32R mutation in NDUFA1 is causing complex I deficiency either by itself or in synergy with additional mtDNA variants.


Assuntos
Complexo I de Transporte de Elétrons/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Mutação/genética , NADH Desidrogenase/genética , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Adulto , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Criança , Pré-Escolar , Cricetinae , Cricetulus , Análise Mutacional de DNA , DNA Mitocondrial/genética , Progressão da Doença , Feminino , Humanos , Masculino , Mitocôndrias Musculares/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADH Desidrogenase/química , Linhagem , Subunidades Proteicas/genética
7.
Clin Cancer Res ; 23(14): 3657-3666, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28096270

RESUMO

Purpose: Tumor-derived cell-free DNA (cfDNA) from urine of patients with cancer offers noninvasive biological material for detection of cancer-related molecular abnormalities such as mutations in Exon 2 of KRASExperimental Design: A quantitative, mutation-enrichment next-generation sequencing test for detecting KRASG12/G13 mutations in urine cfDNA was developed, and results were compared with clinical testing of archival tumor tissue and plasma cfDNA from patients with advanced cancer.Results: With 90 to 110 mL of urine, the KRASG12/G13 cfDNA test had an analytical sensitivity of 0.002% to 0.006% mutant copies in wild-type background. In 71 patients, the concordance between urine cfDNA and tumor was 73% (sensitivity, 63%; specificity, 96%) for all patients and 89% (sensitivity, 80%; specificity, 100%) for patients with urine samples of 90 to 110 mL. Patients had significantly fewer KRASG12/G13 copies in urine cfDNA during systemic therapy than at baseline or disease progression (P = 0.002). Compared with no changes or increases in urine cfDNA KRASG12/G13 copies during therapy, decreases in these measures were associated with longer median time to treatment failure (P = 0.03).Conclusions: A quantitative, mutation-enrichment next-generation sequencing test for detecting KRASG12/G13 mutations in urine cfDNA had good concordance with testing of archival tumor tissue. Changes in mutated urine cfDNA were associated with time to treatment failure. Clin Cancer Res; 23(14); 3657-66. ©2017 AACR.


Assuntos
Biomarcadores Tumorais/urina , Ácidos Nucleicos Livres/urina , Neoplasias/genética , Proteínas Proto-Oncogênicas p21(ras)/urina , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neoplasias/patologia , Neoplasias/urina , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa