Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biol Lett ; 10(6)2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24899683

RESUMO

How climate impacts organisms depends not only on their physiology, but also whether they can buffer themselves against climate variability via their behaviour. One of the way species can withstand hot temperatures is by seeking out cool microclimates, but only if their habitat provides such refugia. Here, we describe a novel thermoregulatory strategy in an arboreal mammal, the koala Phascolarctos cinereus. During hot weather, koalas enhanced conductive heat loss by seeking out and resting against tree trunks that were substantially cooler than ambient air temperature. Using a biophysical model of heat exchange, we show that this behaviour greatly reduces the amount of heat that must be lost via evaporative cooling, potentially increasing koala survival during extreme heat events. While it has long been known that internal temperatures of trees differ from ambient air temperatures, the relevance of this for arboreal and semi-arboreal mammals has not previously been explored. Our results highlight the important role of tree trunks as aboveground 'heat sinks', providing cool local microenvironments not only for koalas, but also for all tree-dwelling species.


Assuntos
Comportamento Animal/fisiologia , Regulação da Temperatura Corporal/fisiologia , Microclima , Phascolarctidae/fisiologia , Animais , Ecossistema , Temperatura Alta , Árvores
2.
Mol Phylogenet Evol ; 64(3): 592-602, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22643287

RESUMO

The three extant potoroo species of the marsupial genus Potorous -Potorous tridactylus, P. longipes and P. gilbertii - are all of conservation concern due to introduced predators and habitat loss associated with the European settlement of Australia. Robust phylogenies can be useful to inform conservation management, but past phylogenetic studies on potoroos have been unable to fully resolve relationships within the genus. Here, a multi-locus approach was employed, using three mitochondrial DNA (mtDNA): NADH dehydrogenase subunit 2, cytochrome c oxidase subunit 1 and 12S rRNA and four nuclear DNA (nuDNA) gene regions: breast and ovarian cancer susceptibility gene, recombination activating gene-1, apolipoprotein B and omega globin. This was coupled with widespread geographic sampling of the broadly distributed P. tridactylus, to investigate the phylogenetic relationships within this genus. Analyses of the mtDNA identified five distinct and highly divergent lineages including, P. longipes, P. gilbertii and three distinct lineages within P. tridactylus (northern mainland, southern mainland and Tasmanian). P. tridactylus was paraphyletic with the P. gilbertii lineage, suggesting that cryptic taxa may exist within P. tridactylus. NuDNA sequences lacked the resolution of mtDNA. Although they resolved the three currently recognised species, they were unable to differentiate lineages within P. tridactylus. Current management of P. tridactylus as two sub-species (mainland and Tasmania) does not recognise the full scope of genetic diversity within this species, especially that of the mainland populations. Until data from more informative nuDNA markers are available, we recommend this species be managed as the following three subspecies: Potorous tridactylus tridactylus (southern Queensland and northern New South Wales); Potorous tridactylus trisulcatus (southern New South Wales and Victoria) Potorous tridactylus apicalis (Tasmania). Molecular dating estimated that divergences within Potorous occurred in the late Miocene through to the early Pliocene.


Assuntos
Evolução Molecular , Filogenia , Potoroidae/classificação , Animais , Austrália , Teorema de Bayes , Núcleo Celular/genética , Conservação dos Recursos Naturais , DNA Mitocondrial/genética , Fósseis , Variação Genética , Funções Verossimilhança , Modelos Genéticos , Potoroidae/genética , Análise de Sequência de DNA
3.
PLoS One ; 12(5): e0176951, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28472147

RESUMO

Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.


Assuntos
Animais Selvagens/fisiologia , Comportamento de Nidação , Temperatura , Animais , Propriedades de Superfície
4.
PLoS Negl Trop Dis ; 8(1): e2668, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498452

RESUMO

The last 20 years has seen a significant series of outbreaks of Buruli/Bairnsdale Ulcer (BU), caused by Mycobacterium ulcerans, in temperate south-eastern Australia (state of Victoria). Here, the prevailing view of M. ulcerans as an aquatic pathogen has been questioned by recent research identifying native wildlife as potential terrestrial reservoirs of infection; specifically, tree-dwelling common ringtail and brushtail possums. In that previous work, sampling of environmental possum faeces detected a high prevalence of M. ulcerans DNA in established endemic areas for human BU on the Bellarine Peninsula, compared with non-endemic areas. Here, we report research from an emergent BU focus recently identified on the Mornington Peninsula, confirming associations between human BU and the presence of the aetiological agent in possum faeces, detected by real-time PCR targeting M. ulcerans IS2404, IS2606 and KR. Mycobacterium ulcerans DNA was detected in 20/216 (9.3%) ground collected ringtail possum faecal samples and 4/6 (66.6%) brushtail possum faecal samples. The distribution of the PCR positive possum faecal samples and human BU cases was highly focal: there was a significant non-random cluster of 16 M. ulcerans positive possum faecal sample points detected by spatial scan statistics (P<0.0001) within a circle of radius 0.42 km, within which were located the addresses of 6/12 human cases reported from the area to date; moreover, the highest sample PCR signal strength (equivalent to ≥10(6) organisms per gram of faeces) was found in a sample point located within this cluster radius. Corresponding faecal samples collected from closely adjacent BU-free areas were predominantly negative. Possums may be useful sentinels to predict endemic spread of human BU in Victoria, for public health planning. Further research is needed to establish whether spatial associations represent evidence of direct or indirect transmission between possums and humans, and the mechanism by which this may occur.


Assuntos
Úlcera de Buruli , Marsupiais , Mycobacterium ulcerans , Vigilância de Evento Sentinela , Trichosurus , Animais , Humanos , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/veterinária , Análise por Conglomerados , Elementos de DNA Transponíveis , Genes Bacterianos , Genótipo , Marsupiais/microbiologia , Tipagem Molecular , Mycobacterium ulcerans/classificação , Mycobacterium ulcerans/genética , Mycobacterium ulcerans/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real , Vigilância de Evento Sentinela/veterinária , Trichosurus/microbiologia , Vitória/epidemiologia
5.
PLoS Negl Trop Dis ; 8(1): e2666, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498451

RESUMO

BACKGROUND: Buruli ulcer (BU) is a skin disease caused by Mycobacterium ulcerans, with endemicity predominantly in sub-Saharan Africa and south-eastern Australia. The mode of transmission and the environmental reservoir(s) of the bacterium and remain elusive. Real-time PCR investigations have detected M. ulcerans DNA in a variety of Australian environmental samples, including the faeces of native possums with and without clinical evidence of infection. This report seeks to expand on previously published findings by the authors' investigative group with regards to clinical and subclinical disease in selected wild possum species in BU-endemic areas of Victoria, Australia. METHODOLOGY/PRINCIPAL FINDINGS: Twenty-seven clinical cases of M. ulcerans infection in free-ranging possums from southeastern Australia were identified retrospectively and prospectively between 1998-2011. Common ringtail possums (Pseudocheirus peregrinus), a common brushtail possum (Trichosurus vulpecula) and a mountain brushtail possum (Trichosurus cunninghami) were included in the clinically affected cohort. Most clinically apparent cases were adults with solitary or multiple ulcerative cutaneous lesions, generally confined to the face, limbs and/or tail. The disease was minor and self-limiting in the case of both Trichosurus spp. possums. In contrast, many of the common ringtail possums had cutaneous disease involving disparate anatomical sites, and in four cases there was evidence of systemic disease at post mortem examination. Where tested using real-time PCR targeted at IS2404, animals typically had significant levels of M. ulcerans DNA throughout the gut and/or faeces. A further 12 possums without cutaneous lesions were found to have PCR-positive gut contents and/or faeces (subclinical cases), and in one of these the organism was cultured from liver tissue. Comparisons were made between clinically and subclinically affected possums, and 61 PCR-negative, non-affected individuals, with regards to disease category and the categorical variables of species (common ringtail possums v others) and sex. Animals with clinical lesions were significantly more likely to be male common ringtail possums. CONCLUSIONS/SIGNIFICANCE: There is significant disease burden in common ringtail possums (especially males) in some areas of Victoria endemic for M. ulcerans disease. The natural history of the disease generally remains unknown, however it appears that some mildly affected common brushtail and mountain brushtail possums can spontaneously overcome the infection, whereas some severely affected animals, especially common ringtail possums, may become systemically, and potentially fatally affected. Subclinical gut carriage of M. ulcerans DNA in possums is quite common and in some common brushtail and mountain brushtail possums this is transient. Further work is required to determine whether M. ulcerans infection poses a potential threat to possum populations, and whether these animals are acting as environmental reservoirs in certain geographical areas.


Assuntos
Úlcera de Buruli/veterinária , Marsupiais/microbiologia , Mycobacterium ulcerans/isolamento & purificação , Trichosurus/microbiologia , Estruturas Animais/microbiologia , Estruturas Animais/patologia , Animais , Úlcera de Buruli/epidemiologia , Úlcera de Buruli/microbiologia , Úlcera de Buruli/patologia , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Portador Sadio/veterinária , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Feminino , Trato Gastrointestinal/microbiologia , Fígado/microbiologia , Masculino , Pele/microbiologia , Pele/patologia , Vitória/epidemiologia
6.
PLoS Negl Trop Dis ; 4(8): e791, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20706592

RESUMO

BACKGROUND: Mycobacterium ulcerans is the causative agent of Buruli ulcer (BU), a destructive skin disease found predominantly in sub-Saharan Africa and south-eastern Australia. The precise mode(s) of transmission and environmental reservoir(s) remain unknown, but several studies have explored the role of aquatic invertebrate species. The purpose of this study was to investigate the environmental distribution of M. ulcerans in south-eastern Australia. METHODOLOGY/PRINCIPAL FINDINGS: A range of environmental samples was collected from Point Lonsdale (a small coastal town southwest of Melbourne, Australia, endemic for BU) and from areas with fewer or no reported incident cases of BU. Mycobacterium ulcerans DNA was detected at low levels by real-time PCR in soil, sediment, water residue, aquatic plant biofilm and terrestrial vegetation collected in Point Lonsdale. Higher levels of M. ulcerans DNA were detected in the faeces of common ringtail (Pseudocheirus peregrinus) and common brushtail (Trichosurus vulpecula) possums. Systematic testing of possum faeces revealed that M. ulcerans DNA could be detected in 41% of faecal samples collected in Point Lonsdale compared with less than 1% of faecal samples collected from non-endemic areas (p<0.0001). Capture and clinical examination of live possums in Point Lonsdale validated the accuracy of the predictive value of the faecal surveys by revealing that 38% of ringtail possums and 24% of brushtail possums had laboratory-confirmed M. ulcerans skin lesions and/or M. ulcerans PCR positive faeces. Whole genome sequencing revealed an extremely close genetic relationship between human and possum M. ulcerans isolates. CONCLUSIONS/SIGNIFICANCE: The prevailing wisdom is that M. ulcerans is an aquatic pathogen and that BU is acquired by contact with certain aquatic environments (swamps, slow-flowing water). Now, after 70 years of research, we propose a transmission model for BU in which terrestrial mammals are implicated as reservoirs for M. ulcerans.


Assuntos
Úlcera de Buruli/microbiologia , Úlcera de Buruli/transmissão , Ecossistema , Microbiologia Ambiental , Marsupiais/microbiologia , Mycobacterium ulcerans/isolamento & purificação , Trichosurus/microbiologia , Animais , Austrália , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Fezes/microbiologia , Genoma Bacteriano , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Homologia de Sequência , Pele/microbiologia , Pele/patologia
7.
Biol Lett ; 1(1): 64-7, 2005 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-17148129

RESUMO

The koala is the quintessential specialist herbivore, feeding almost exclusively on Eucalyptus foliage. Consequently, the limitations imposed on the koala's diet by plant defences indicate the extent to which evolutionary adaptations allow mammalian herbivores to circumvent such defences. We tested whether a recently discovered group of plant secondary metabolites, the formylated phloroglucinol compounds (FPCs), deters koalas from feeding on some eucalypt foliage. We found that captive koalas ate less foliage in a single night from trees with high FPC concentrations. Individual trees also differ in the types of FPC they possess, but for a given eucalypt species, most FPCs were similarly effective deterrents. Two closely related and sympatric eucalypt species could be clearly separated by the amounts that koalas ate from each; however, this difference could not be explained by total FPC concentrations alone. We suggest, that in this case, the presence of a distinct type of FPC deters koala herbivory on the less palatable species, and may have facilitated the evolutionary divergence of these species. We conclude that plant defences probably play an important role in determining the distribution and abundance of koalas.


Assuntos
Eucalyptus/química , Comportamento Alimentar , Phascolarctidae/fisiologia , Animais , Cromatografia Líquida de Alta Pressão , Floroglucinol/análise , Floroglucinol/química , Folhas de Planta/química , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa