Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(1): 167-181, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34478595

RESUMO

Modern food production is spatially concentrated in global "breadbaskets." A major unresolved question is whether these peak production regions will shift poleward as the climate warms, allowing some recovery of potential climate-related losses. While agricultural impacts studies to date have focused on currently cultivated land, the Global Gridded Crop Model Intercomparison Project (GGCMI) Phase 2 experiment allows us to assess changes in both yields and the location of peak productivity regions under warming. We examine crop responses under projected end of century warming using seven process-based models simulating five major crops (maize, rice, soybeans, and spring and winter wheat) with a variety of adaptation strategies. We find that in no-adaptation cases, when planting date and cultivar choices are held fixed, regions of peak production remain stationary and yield losses can be severe, since growing seasons contract strongly with warming. When adaptations in management practices are allowed (cultivars that retain growing season length under warming and modified planting dates), peak productivity zones shift poleward and yield losses are largely recovered. While most growing-zone shifts are ultimately limited by geography, breadbaskets studied here move poleward over 600 km on average by end of the century under RCP 8.5. These results suggest that agricultural impacts assessments can be strongly biased if restricted in spatial area or in the scope of adaptive behavior considered. Accurate evaluation of food security under climate change requires global modeling and careful treatment of adaptation strategies.


Assuntos
Mudança Climática , Fazendeiros , Adaptação Psicológica , Agricultura , Produtos Agrícolas , Humanos
2.
Remote Sens Environ ; 280: 113198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36090616

RESUMO

Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under shortterm, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions.

3.
ISPRS J Photogramm Remote Sens ; 193: 104-114, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36643957

RESUMO

Spaceborne imaging spectroscopy is a highly promising data source for all agricultural management and research disciplines that require spatio-temporal information on crop properties. Recently launched science-driven missions, such as the Environmental Mapping and Analysis Program (EnMAP), deliver unprecedented data from the Earth's surface. This new kind of data should be explored to develop robust retrieval schemes for deriving crucial variables from future routine missions. Therefore, we present a workflow for inferring crop carbon content (Carea ), and aboveground dry and wet biomass (AGBdry , AGBfresh ) from EnMAP data. To achieve this, a hybrid workflow was generated, combining radiative transfer modeling (RTM) with machine learning regression algorithms. The key concept involves: (1) coupling the RTMs PROSPECT-PRO and 4SAIL for simulation of a wide range of vegetation states, (2) using dimensionality reduction to deal with collinearity, (3) applying a semi-supervised active learning technique against a 4-years campaign dataset, followed by (4) training of a Gaussian process regression (GPR) machine learning algorithm and (5) validation with an independent in situ dataset acquired during the ESA Hypersense experiment campaign at a German test site. Internal validation of the GPR-Carea and GPR-AGB models achieved coefficients of determination (R 2) of 0.80 for Carea and 0.80, 0.71 for AGBdry and AGBfresh , respectively. The mapping capability of these models was successfully demonstrated using airborne AVIRIS-NG hyperspectral imagery, which was spectrally resampled to EnMAP spectral properties. Plausible estimates were achieved over both bare and green fields after adding bare soil spectra to the training data. Validation over green winter wheat fields generated reliable estimates as suggested by low associated model uncertainties (< 40%). These results suggest a high degree of model reliability for cultivated areas during active growth phases at canopy closure. Overall, our proposed carbon and biomass models based on EnMAP spectral sampling demonstrate a promising path toward the inference of these crucial variables over cultivated areas from future spaceborne operational hyperspectral missions.

4.
Glob Chang Biol ; 27(16): 3870-3882, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33998112

RESUMO

Climate change affects global agricultural production and threatens food security. Faster phenological development of crops due to climate warming is one of the main drivers for potential future yield reductions. To counter the effect of faster maturity, adapted varieties would require more heat units to regain the previous growing period length. In this study, we investigate the effects of variety adaptation on global caloric production under four different future climate change scenarios for maize, rice, soybean, and wheat. Thereby, we empirically identify areas that could require new varieties and areas where variety adaptation could be achieved by shifting existing varieties into new regions. The study uses an ensemble of seven global gridded crop models and five CMIP6 climate models. We found that 39% (SSP5-8.5) of global cropland could require new crop varieties to avoid yield loss from climate change by the end of the century. At low levels of warming (SSP1-2.6), 85% of currently cultivated land can draw from existing varieties to shift within an agro-ecological zone for adaptation. The assumptions on available varieties for adaptation have major impacts on the effectiveness of variety adaptation, which could more than half in SSP5-8.5. The results highlight that region-specific breeding efforts are required to allow for a successful adaptation to climate change.


Assuntos
Produção Agrícola , Melhoramento Vegetal , Agricultura , Mudança Climática , Produtos Agrícolas
5.
ISPRS J Photogramm Remote Sens ; 178: 382-395, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36203652

RESUMO

Satellite imaging spectroscopy for terrestrial applications is reaching maturity with recently launched and upcoming science-driven missions, e.g. PRecursore IperSpettrale della Missione Applicativa (PRISMA) and Environmental Mapping and Analysis Program (EnMAP), respectively. Moreover, the high-priority mission candidate Copernicus Hyperspectral Imaging Mission for the Environment (CHIME) is expected to globally provide routine hyperspectral observations to support new and enhanced services for, among others, sustainable agricultural and biodiversity management. Thanks to the provision of contiguous visible-to-shortwave infrared spectral data, hyperspectral missions open enhanced opportunities for the development of new-generation retrieval models of multiple vegetation traits. Among these, canopy nitrogen content (CNC) is one of the most promising variables given its importance for agricultural monitoring applications. This work presents the first hybrid CNC retrieval model for the operational delivery from spaceborne imaging spectroscopy data. To achieve this, physically-based models were combined with machine learning regression algorithms and active learning (AL). The key concepts involve: (1) coupling the radiative transfer models PROSPECT-PRO and SAIL for the generation of a wide range of vegetation states as training data, (2) using dimensionality reduction to deal with collinearity, (3) applying an AL technique in combination with Gaussian process regression (GPR) for fine-tuning the training dataset on in field collected data, and (4) adding non-vegetated spectra to enable the model to deal with spectral heterogeneity in the image. The final CNC model was successfully validated against field data achieving a low root mean square error (RMSE) of 3.4 g/m2 and coefficient of determination (R 2) of 0.7. The model was applied to a PRISMA image acquired over agricultural areas in the North of Munich, Germany. Mapping aboveground CNC yielded reliable estimates over the whole landscape and meaningful associated uncertainties. These promising results demonstrate the feasibility of routinely quantifying CNC from space, such as in an operational context as part of the future CHIME mission.

6.
Remote Sens Environ ; 242: 111758, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36082364

RESUMO

Nitrogen (N) is considered as one of the most important plant macronutrients and proper management of N therefore is a pre-requisite for modern agriculture. Continuous satellite-based monitoring of this key plant trait would help to understand individual crop N use efficiency and thus would enable site-specific N management. Since hyperspectral imaging sensors could provide detailed measurements of spectral signatures corresponding to the optical activity of chemical constituents, they have a theoretical advantage over multi-spectral sensing for the detection of crop N. The current study aims to provide a state-of-the-art overview of crop N retrieval methods from hyperspectral data in the agricultural sector and in the context of future satellite imaging spectroscopy missions. Over 400 studies were reviewed for this purpose, identifying those estimating mass-based N (N concentration, N%) and area-based N (N content, Narea) using hyperspectral remote sensing data. Retrieval methods of the 125 studies selected in this review can be grouped into: (1) parametric regression methods, (2) linear nonparametric regression methods or chemometrics, (3) nonlinear nonparametric regression methods or machine learning regression algorithms, (4) physically-based or radiative transfer models (RTM), (5) use of alternative data sources (sun-induced fluorescence, SIF) and (6) hybrid or combined techniques. Whereas in the last decades methods for estimation of Narea and N% from hyperspectral data have been mainly based on simple parametric regression algorithms, such as narrowband vegetation indices, there is an increasing trend of using machine learning, RTM and hybrid techniques. Within plants, N is invested in proteins and chlorophylls stored in the leaf cells, with the proteins being the major nitrogen-containing biochemical constituent. However, in most studies, the relationship between N and chlorophyll content was used to estimate crop N, focusing on the visible-near infrared (VNIR) spectral domains, and thus neglecting protein-related N and reallocation of nitrogen to non-photosynthetic compartments. Therefore, we recommend exploiting the estimation of nitrogen via the proxy of proteins using hyperspectral data and in particular the short-wave infrared (SWIR) spectral domain. We further strongly encourage a standardization of nitrogen terminology, distinguishing between N% and Narea. Moreover, the exploitation of physically-based approaches is highly recommended combined with machine learning regression algorithms, which represents an interesting perspective for future research in view of new spaceborne imaging spectroscopy sensors.

7.
Int J Appl Earth Obs Geoinf ; 92: 102174, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36090128

RESUMO

Hyperspectral acquisitions have proven to be the most informative Earth observation data source for the estimation of nitrogen (N) content, which is the main limiting nutrient for plant growth and thus agricultural production. In the past, empirical algorithms have been widely employed to retrieve information on this biochemical plant component from canopy reflectance. However, these approaches do not seek for a cause-effect relationship based on physical laws. Moreover, most studies solely relied on the correlation of chlorophyll content with nitrogen, and thus neglected the fact that most N is bound in proteins. Our study presents a hybrid retrieval method using a physically-based approach combined with machine learning regression to estimate crop N content. Within the workflow, the leaf optical properties model PROSPECT-PRO including the newly calibrated specific absorption coefficients (SAC) of proteins, was coupled with the canopy reflectance model 4SAIL to PROSAIL-PRO. The latter was then employed to generate a training database to be used for advanced probabilistic machine learning methods: a standard homoscedastic Gaussian process (GP) and a heteroscedastic GP regression that accounts for signal-to-noise relations. Both GP models have the property of providing confidence intervals for the estimates, which sets them apart from other machine learners. Moreover, a GP-based sequential backward band removal algorithm was employed to analyze the band-specific information content of PROSAIL-PRO simulated spectra for the estimation of aboveground N. Data from multiple hyperspectral field campaigns, carried out in the framework of the future satellite mission Environmental Mapping and Analysis Program (EnMAP), were exploited for validation. In these campaigns, corn and winter wheat spectra were acquired to simulate spectral EnMAP data. Moreover, destructive N measurements from leaves, stalks and fruits were collected separately to enable plant-organ-specific validation. The results showed that both GP models can provide accurate aboveground N simulations, with slightly better results of the heteroscedastic GP in terms of model testing and against in situ N measurements from leaves plus stalks, with root mean square error (RMSE) of 2.1 g/m2. However, the inclusion of fruit N content for validation deteriorated the results, which can be explained by the inability of the radiation to penetrate the thick tissues of stalks, corn cobs and wheat ears. GP-based band analysis identified optimal spectral settings with ten bands mainly situated in the shortwave infrared (SWIR) spectral region. Use of well-known protein absorption bands from the literature showed comparative results. Finally, the heteroscedastic GP model was successfully applied on airborne hyperspectral data for N mapping. We conclude that GP algorithms, and in particular the heteroscedastic GP, should be implemented for global agricultural monitoring of aboveground N from future imaging spectroscopy data.

8.
Remote Sens (Basel) ; 13(2): 287, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36081683

RESUMO

The current exponential increase of spatiotemporally explicit data streams from satellitebased Earth observation missions offers promising opportunities for global vegetation monitoring. Intelligent sampling through active learning (AL) heuristics provides a pathway for fast inference of essential vegetation variables by means of hybrid retrieval approaches, i.e., machine learning regression algorithms trained by radiative transfer model (RTM) simulations. In this study we summarize AL theory and perform a brief systematic literature survey about AL heuristics used in the context of Earth observation regression problems over terrestrial targets. Across all relevant studies it appeared that: (i) retrieval accuracy of AL-optimized training data sets outperformed models trained over large randomly sampled data sets, and (ii) Euclidean distance-based (EBD) diversity method tends to be the most efficient AL technique in terms of accuracy and computational demand. Additionally, a case study is presented based on experimental data employing both uncertainty and diversity AL criteria. Hereby, a a simulated training data base by the PROSAIL-PRO canopy RTM is used to demonstrate the benefit of AL techniques for the estimation of total leaf carotenoid content (Cxc ) and leaf water content (Cw ). Gaussian process regression (GPR) was incorporated to minimize and optimize the training data set with AL. Training the GPR algorithm on optimally AL-based sampled data sets led to improved variable retrievals compared to training on full data pools, which is further demonstrated on a mapping example. From these findings we can recommend the use of AL-based sub-sampling procedures to select the most informative samples out of large training data pools. This will not only optimize regression accuracy due to exclusion of redundant information, but also speed up processing time and reduce final model size of kernel-based machine learning regression algorithms, such as GPR. With this study we want to encourage further testing and implementation of AL sampling methods for hybrid retrieval workflows. AL can contribute to the solution of regression problems within the framework of operational vegetation monitoring using satellite imaging spectroscopy data, and may strongly facilitate data processing for cloud-computing platforms.

9.
Remote Sens (Basel) ; 13(22): 4711, 2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36082004

RESUMO

Non-photosynthetic vegetation (NPV) biomass has been identified as a priority variable for upcoming spaceborne imaging spectroscopy missions, calling for a quantitative estimation of lignocellulosic plant material as opposed to the sole indication of surface coverage. Therefore, we propose a hybrid model for the retrieval of non-photosynthetic cropland biomass. The workflow included coupling the leaf optical model PROSPECT-PRO with the canopy reflectance model 4SAIL, which allowed us to simulate NPV biomass from carbon-based constituents (CBC) and leaf area index (LAI). PROSAIL-PRO provided a training database for a Gaussian process regression (GPR) algorithm, simulating a wide range of non-photosynthetic vegetation states. Active learning was employed to reduce and optimize the training data set. In addition, we applied spectral dimensionality reduction to condense essential information of non-photosynthetic signals. The resulting NPV-GPR model was successfully validated against soybean field data with normalized root mean square error (nRMSE) of 13.4% and a coefficient of determination (R2) of 0.85. To demonstrate mapping capability, the NPV-GPR model was tested on a PRISMA hyperspectral image acquired over agricultural areas in the North of Munich, Germany. Reliable estimates were mainly achieved over senescent vegetation areas as suggested by model uncertainties. The proposed workflow is the first step towards the quantification of non-photosynthetic cropland biomass as a next-generation product from near-term operational missions, such as CHIME.

10.
Nat Commun ; 6: 8946, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26558436

RESUMO

Global biomass demand is expected to roughly double between 2005 and 2050. Current studies suggest that agricultural intensification through optimally managed crops on today's cropland alone is insufficient to satisfy future demand. In practice though, improving crop growth management through better technology and knowledge almost inevitably goes along with (1) improving farm management with increased cropping intensity and more annual harvests where feasible and (2) an economically more efficient spatial allocation of crops which maximizes farmers' profit. By explicitly considering these two factors we show that, without expansion of cropland, today's global biomass potentials substantially exceed previous estimates and even 2050s' demands. We attribute 39% increase in estimated global production potentials to increasing cropping intensities and 30% to the spatial reallocation of crops to their profit-maximizing locations. The additional potentials would make cropland expansion redundant. Their geographic distribution points at possible hotspots for future intensification.


Assuntos
Agricultura/tendências , Biomassa , Produtos Agrícolas/crescimento & desenvolvimento , Internacionalidade , Conservação dos Recursos Naturais , Ecossistema , Previsões
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa