Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 597(7877): 516-521, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471291

RESUMO

Biodiversity contributes to the ecological and climatic stability of the Amazon Basin1,2, but is increasingly threatened by deforestation and fire3,4. Here we quantify these impacts over the past two decades using remote-sensing estimates of fire and deforestation and comprehensive range estimates of 11,514 plant species and 3,079 vertebrate species in the Amazon. Deforestation has led to large amounts of habitat loss, and fires further exacerbate this already substantial impact on Amazonian biodiversity. Since 2001, 103,079-189,755 km2 of Amazon rainforest has been impacted by fires, potentially impacting the ranges of 77.3-85.2% of species that are listed as threatened in this region5. The impacts of fire on the ranges of species in Amazonia could be as high as 64%, and greater impacts are typically associated with species that have restricted ranges. We find close associations between forest policy, fire-impacted forest area and their potential impacts on biodiversity. In Brazil, forest policies that were initiated in the mid-2000s corresponded to reduced rates of burning. However, relaxed enforcement of these policies in 2019 has seemingly begun to reverse this trend: approximately 4,253-10,343 km2 of forest has been impacted by fire, leading to some of the most severe potential impacts on biodiversity since 2009. These results highlight the critical role of policy enforcement in the preservation of biodiversity in the Amazon.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/legislação & jurisprudência , Secas , Agricultura Florestal/legislação & jurisprudência , Floresta Úmida , Incêndios Florestais/estatística & dados numéricos , Animais , Brasil , Mudança Climática/estatística & dados numéricos , Florestas , Mapeamento Geográfico , Plantas , Árvores/fisiologia , Vertebrados
3.
Emerg Infect Dis ; 29(3): 1-9, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36823026

RESUMO

The pathogens that cause most emerging infectious diseases in humans originate in animals, particularly wildlife, and then spill over into humans. The accelerating frequency with which humans and domestic animals encounter wildlife because of activities such as land-use change, animal husbandry, and markets and trade in live wildlife has created growing opportunities for pathogen spillover. The risk of pathogen spillover and early disease spread among domestic animals and humans, however, can be reduced by stopping the clearing and degradation of tropical and subtropical forests, improving health and economic security of communities living in emerging infectious disease hotspots, enhancing biosecurity in animal husbandry, shutting down or strictly regulating wildlife markets and trade, and expanding pathogen surveillance. We summarize expert opinions on how to implement these goals to prevent outbreaks, epidemics, and pandemics.


Assuntos
Doenças Transmissíveis Emergentes , Zoonoses , Animais , Humanos , Zoonoses/epidemiologia , Pandemias , Animais Selvagens , Animais Domésticos , Doenças Transmissíveis Emergentes/epidemiologia , Surtos de Doenças
5.
Conserv Biol ; 36(5): e13941, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35648687

RESUMO

Climate change is challenging the ability of protected areas (PAs) to meet their objectives. To improve PA planning, we developed a framework for assessing PA vulnerability to climate change based on consideration of potential climate change impacts on species and their habitats and resource use. Furthermore, the capacity of PAs to adapt to these climate threats was determined through assessment of PA management effectiveness, adjacent land use, and financial resilience. Users reach a PA-specific vulnerability score and rank based on scoring of these categories. We applied the framework to South Africa's 19 national parks. Because the 19 parks are managed as a national network, we explored how resources might be best allocated to address climate change. Each park's importance to the network's biodiversity conservation and revenue generation was estimated and used to weight overall vulnerability scores and ranks. Park vulnerability profiles showed distinct combinations of potential impacts of climate change and adaptive capacities; the former had a greater influence on vulnerability. Mapungubwe National Park emerged as the most vulnerable to climate change, despite its relatively high adaptive capacity, largely owing to large projected changes in species and resource use. Table Mountain National Park scored the lowest in overall vulnerability. Climate change vulnerability rankings differed markedly once importance weightings were applied; Kruger National Park was the most vulnerable under both importance scenarios. Climate change vulnerability assessment is fundamental to effective adaptation planning. Our PA assessment tool is the only tool that quantifies PA vulnerability to climate change in a comparative index. It may be used in data-rich and data-poor contexts to prioritize resource allocation across PA networks and can be applied from local to global scales.


Resumen El cambio climático es un gran obstáculo para que las áreas protegidas (AP) logren sus objetivos. Para mejorar la planeación de las AP, desarrollamos un marco de trabajo para evaluar la vulnerabilidad de estas ante el cambio climático con base en la consideración de los impactos potenciales del cambio climático sobre las especies, sus hábitats y los recursos que usan. Además, determinamos la capacidad de las AP para adaptarse a estas amenazas climáticas mediante la valoración de las categorías efectividad de la gestión de las AP, las tierras adyacentes y la resiliencia económica. Los usuarios logran un puntaje y clasificación de vulnerabilidad específicas de la AP con base en las calificaciones de estas categorías. Aplicamos el marco de trabajo a los 19 parques nacionales de Sudáfrica. Ya que todos los parques se manejan como una red nacional, exploramos cómo pueden asignarse de mejor manera los recursos para lidiar con el cambio climático. Se estimaron la importancia de cada parque para la conservación de la biodiversidad de la red y la generación de ganancias. Después usamos las estimaciones para sopesar los puntajes y las clasificaciones generales de vulnerabilidad. Los perfiles de vulnerabilidad de los parques mostraron combinaciones distintivas de impactos potenciales del cambio climático y capacidades de adaptación; los impactos tuvieron una mayor influencia sobre la vulnerabilidad. El Parque Nacional Mapungubwe se ubicó como el más vulnerable ante el cambio climático, a pesar de tener una capacidad de adaptación relativamente alta, principalmente debida a grandes cambios proyectados para el uso de recursos y especies. El Parque Nacional Table Mountain tuvo el puntaje más bajo de vulnerabilidad generalizada. Las clasificaciones de vulnerabilidad al cambio climático difirieron notablemente una vez que se aplicaron los factores de importancia; el Parque Nacional Kruger fue el más vulnerable bajo ambos escenarios de importancia. La evaluación de vulnerabilidad al cambio climático es fundamental para la planeación efectiva de la adaptación. Nuestra herramienta de valoración de las AP es la única que cuantifica la vulnerabilidad de las AP al cambio climático en un índice comparativo. Puede usarse en contextos con muchos o pocos datos para priorizar la asignación de recursos en las redes de AP y puede aplicarse desde la escala local hasta la mundial.


Assuntos
Mudança Climática , Parques Recreativos , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , África do Sul
6.
Cogn Emot ; 35(8): 1479-1498, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34455927

RESUMO

Social anxiety occurs in everyday social interactions, yet the real-world factors that shape the moment-to-moment experience of social anxiety have not been fully explored. Using ecological momentary assessments (smartphone-based, five signals a day for 21 days), the present study examined the associations between state social anxiety (SSA) and characteristics of interaction partners in varied contexts, and how these momentary associations differed with trait social anxiety (TSA). Ninety-two participants (54% female, age from 18 to 34) completed 4185 momentary reports. Results from multilevel models showed that perceived judgmentalness and unfamiliarity of interaction partners were positively associated with SSA, and the associations were stronger for the high TSA group (n = 30) compared to a control group (n = 62). Exploratory analyses with various types of interaction partners and social settings revealed noticeable group differences in how the types were associated with SSA (e.g. acquaintance, close friend/romantic partner) and how they influenced the effect of judgmentalness and unfamiliarity on SSA (e.g. authority, work/school). Overall, the findings highlight the role of contextual associations in social anxiety, and the benefits and the need for more comprehensive approaches with EMA in studying social anxiety, particularly its contextual aspects.


Assuntos
Ansiedade , Avaliação Momentânea Ecológica , Transtornos de Ansiedade , Feminino , Humanos , Masculino , Smartphone
7.
Proc Natl Acad Sci U S A ; 114(39): 10438-10442, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28893985

RESUMO

Climate change will cause geographic range shifts for pollinators and major crops, with global implications for food security and rural livelihoods. However, little is known about the potential for coupled impacts of climate change on pollinators and crops. Coffee production exemplifies this issue, because large losses in areas suitable for coffee production have been projected due to climate change and because coffee production is dependent on bee pollination. We modeled the potential distributions of coffee and coffee pollinators under current and future climates in Latin America to understand whether future coffee-suitable areas will also be suitable for pollinators. Our results suggest that coffee-suitable areas will be reduced 73-88% by 2050 across warming scenarios, a decline 46-76% greater than estimated by global assessments. Mean bee richness will decline 8-18% within future coffee-suitable areas, but all are predicted to contain at least 5 bee species, and 46-59% of future coffee-suitable areas will contain 10 or more species. In our models, coffee suitability and bee richness each increase (i.e., positive coupling) in 10-22% of future coffee-suitable areas. Diminished coffee suitability and bee richness (i.e., negative coupling), however, occur in 34-51% of other areas. Finally, in 31-33% of the future coffee distribution areas, bee richness decreases and coffee suitability increases. Assessing coupled effects of climate change on crop suitability and pollination can help target appropriate management practices, including forest conservation, shade adjustment, crop rotation, or status quo, in different regions.


Assuntos
Abelhas/classificação , Mudança Climática , Coffea/crescimento & desenvolvimento , Café/economia , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Polinização/fisiologia , Agricultura/economia , Animais , Abelhas/fisiologia , Ecossistema , Fazendas/economia
8.
Proc Natl Acad Sci U S A ; 110(17): 6907-12, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569231

RESUMO

Climate change is expected to impact ecosystems directly, such as through shifting climatic controls on species ranges, and indirectly, for example through changes in human land use that may result in habitat loss. Shifting patterns of agricultural production in response to climate change have received little attention as a potential impact pathway for ecosystems. Wine grape production provides a good test case for measuring indirect impacts mediated by changes in agriculture, because viticulture is sensitive to climate and is concentrated in Mediterranean climate regions that are global biodiversity hotspots. Here we demonstrate that, on a global scale, the impacts of climate change on viticultural suitability are substantial, leading to possible conservation conflicts in land use and freshwater ecosystems. Area suitable for viticulture decreases 25% to 73% in major wine producing regions by 2050 in the higher RCP 8.5 concentration pathway and 19% to 62% in the lower RCP 4.5. Climate change may cause establishment of vineyards at higher elevations that will increase impacts on upland ecosystems and may lead to conversion of natural vegetation as production shifts to higher latitudes in areas such as western North America. Attempts to maintain wine grape productivity and quality in the face of warming may be associated with increased water use for irrigation and to cool grapes through misting or sprinkling, creating potential for freshwater conservation impacts. Agricultural adaptation and conservation efforts are needed that anticipate these multiple possible indirect effects.


Assuntos
Agricultura/estatística & dados numéricos , Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Modelos Biológicos , Vitis/crescimento & desenvolvimento , Vinho/estatística & dados numéricos , Água Doce/análise , Região do Mediterrâneo
10.
Elife ; 122023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36786678

RESUMO

As we learn, dynamic memory processes build structured knowledge across our experiences. Such knowledge enables the formation of internal models of the world that we use to plan, make decisions, and act. Recent theorizing posits that mnemonic mechanisms of differentiation and integration - which at one level may seem to be at odds - both contribute to the emergence of structured knowledge. We tested this possibility using fMRI as human participants learned to navigate within local and global virtual environments over the course of 3 days. Pattern similarity analyses on entorhinal cortical and hippocampal patterns revealed evidence that differentiation and integration work concurrently to build local and global environmental representations, and that variability in integration relates to differences in navigation efficiency. These results offer new insights into the neural machinery and the underlying mechanisms that translate experiences into structured knowledge that allows us to navigate to achieve goals.


Assuntos
Objetivos , Hipocampo , Humanos , Memória , Córtex Entorrinal , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos
11.
Trends Ecol Evol ; 38(9): 843-858, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179171

RESUMO

For each assessment cycle of the Intergovernmental Panel on Climate Change (IPCC), researchers in the life sciences are called upon to provide evidence to policymakers planning for a changing future. This research increasingly relies on highly technical and complex outputs from climate models. The strengths and weaknesses of these data may not be fully appreciated beyond the climate modelling community; therefore, uninformed use of raw or preprocessed climate data could lead to overconfident or spurious conclusions. We provide an accessible introduction to climate model outputs that is intended to empower the life science community to robustly address questions about human and natural systems in a changing world.


Assuntos
Mudança Climática , Modelos Climáticos , Humanos , Previsões
12.
J Biol Chem ; 286(20): 18093-103, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454687

RESUMO

The tumor suppressor PTEN (phosphatase and tensin homologue) negatively regulates the PI3K pathway through its lipid phosphatase activity and is one of the most commonly lost tumor suppressors in human cancers. Though the tumor suppressive function involves the lipid phosphatase-dependent and -independent activities of PTEN, the mechanism leading to the phosphatase-independent function of PTEN is understood poorly. Some PTEN mutants have lipid phosphatase activity but fail to suppress cell growth. Here, we use a cancer-associated mutant, G20E, to gain insight into the phosphatase-independent function of PTEN by investigating protein-protein interactions using MS-based stable isotope labeling by amino acids in cell culture (SILAC). A strategy named parallel affinity purification (PAP) and SILAC has been developed to prioritize interactors and to compare the interactions between wild-type and G20E PTEN. Clustering of the prioritized interactors acquired by the PAP-SILAC approach shows three distinct clusters: 1) wild-type-specific interactors, 2) interactors unique to the G20E mutant, and 3) proteins common to wild-type and mutant. These interactors are involved mainly in cell migration and apoptosis pathways. We further demonstrate that the wild-type-specific interactor, NUDTL16L1, is required for the regulatory function of wild-type PTEN in cell migration. These findings contribute to a better understanding of the mechanisms of the phosphatase-dependent and -independent functions of PTEN.


Assuntos
Mutação de Sentido Incorreto , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , PTEN Fosfo-Hidrolase/metabolismo , Aminoácidos/farmacologia , Linhagem Celular Tumoral , Humanos , Marcação por Isótopo/métodos , Proteínas de Neoplasias/genética , Neoplasias/genética , PTEN Fosfo-Hidrolase/genética
13.
Conserv Biol ; 26(3): 408-19, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22497442

RESUMO

We examined the cost of conserving species as climate changes. We used a Maxent species distribution model to predict the ranges from 2000 to 2080 of 74 plant species endemic to the forests of Madagascar under 3 climate scenarios. We set a conservation target of achieving 10,000 ha of forest cover for each species and calculated the cost of achieving this target under each scenario. We interviewed managers of projects to restore native forests and conducted a literature review to obtain the net present cost per hectare of management actions to maintain or establish forest cover. For each species, we added hectares of land from lowest to highest cost per additional year of forest cover until the conservation target was achieved throughout the time period. Climate change was predicted to reduce the size of species' ranges, the overlap between species' ranges and existing or planned protected areas, and the overlap between species' ranges and existing forest. As a result, climate change increased the cost of achieving the conservation target by necessitating successively more costly management actions: additional management within existing protected areas (US$0-60/ha); avoidance of forest degradation (i.e., loss of biomass) in community-managed areas ($160-576/ha); avoidance of deforestation in unprotected areas ($252-1069/ha); and establishment of forest on nonforested land within protected areas ($802-2710/ha), in community-managed areas ($962-3226/ha), and in unprotected areas ($1054-3719/ha). Our results suggest that although forest restoration may be required for the conservation of some species as climate changes, it is more cost-effective to maintain existing forest wherever possible.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/economia , Ecossistema , Plantas , Madagáscar , Modelos Biológicos , Fatores de Tempo
14.
Environ Manage ; 50(3): 341-51, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773068

RESUMO

As natural resource management agencies and conservation organizations seek guidance on responding to climate change, myriad potential actions and strategies have been proposed for increasing the long-term viability of some attributes of natural systems. Managers need practical tools for selecting among these actions and strategies to develop a tailored management approach for specific targets at a given location. We developed and present one such tool, the participatory Adaptation for Conservation Targets (ACT) framework, which considers the effects of climate change in the development of management actions for particular species, ecosystems and ecological functions. Our framework is based on the premise that effective adaptation of management to climate change can rely on local knowledge of an ecosystem and does not necessarily require detailed projections of climate change or its effects. We illustrate the ACT framework by applying it to an ecological function in the Greater Yellowstone Ecosystem (Montana, Wyoming, and Idaho, USA)--water flows in the upper Yellowstone River. We suggest that the ACT framework is a practical tool for initiating adaptation planning, and for generating and communicating specific management interventions given an increasingly altered, yet uncertain, climate.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Previsões , Objetivos , Rios , Estados Unidos , Abastecimento de Água
15.
J Am Coll Health ; : 1-9, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35044878

RESUMO

OBJECTIVE: College drinking is a significant individual and societal problem, and thus, identifying risk factors to alcohol-related problems has been an important line of inquiry. Adding to this rich literature, the current study examined whether perfectionism dimensions were associated with alcohol-related problems and whether a poor self-regulation process linked these associations. PARTICIPANTS: A total of 410 university students completed measures pertaining to perfectionism, procrastination, and negative consequences of alcohol use. METHODS: Parallel mediation models were tested. RESULTS: There was support for an indirect effect in the association between perfectionistic concerns and alcohol-related problems through susceptibility to temptation but not through pure procrastination or irrational procrastination. Perfectionistic strivings dimension was not associated with alcohol-related problems and this relation was not mediated by any procrastination dimensions. CONCLUSIONS: Building internal resources to better resist immediately gratifying yet long-run detrimental behavioral habits is important, especially so for highly self-critical students.

16.
Sci Adv ; 8(5): eabl4183, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119921

RESUMO

The lives lost and economic costs of viral zoonotic pandemics have steadily increased over the past century. Prominent policymakers have promoted plans that argue the best ways to address future pandemic catastrophes should entail, "detecting and containing emerging zoonotic threats." In other words, we should take actions only after humans get sick. We sharply disagree. Humans have extensive contact with wildlife known to harbor vast numbers of viruses, many of which have not yet spilled into humans. We compute the annualized damages from emerging viral zoonoses. We explore three practical actions to minimize the impact of future pandemics: better surveillance of pathogen spillover and development of global databases of virus genomics and serology, better management of wildlife trade, and substantial reduction of deforestation. We find that these primary pandemic prevention actions cost less than 1/20th the value of lives lost each year to emerging viral zoonoses and have substantial cobenefits.

18.
Nat Ecol Evol ; 5(11): 1499-1509, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34429536

RESUMO

To meet the ambitious objectives of biodiversity and climate conventions, the international community requires clarity on how these objectives can be operationalized spatially and how multiple targets can be pursued concurrently. To support goal setting and the implementation of international strategies and action plans, spatial guidance is needed to identify which land areas have the potential to generate the greatest synergies between conserving biodiversity and nature's contributions to people. Here we present results from a joint optimization that minimizes the number of threatened species, maximizes carbon retention and water quality regulation, and ranks terrestrial conservation priorities globally. We found that selecting the top-ranked 30% and 50% of terrestrial land area would conserve respectively 60.7% and 85.3% of the estimated total carbon stock and 66% and 89.8% of all clean water, in addition to meeting conservation targets for 57.9% and 79% of all species considered. Our data and prioritization further suggest that adequately conserving all species considered (vertebrates and plants) would require giving conservation attention to ~70% of the terrestrial land surface. If priority was given to biodiversity only, managing 30% of optimally located land area for conservation may be sufficient to meet conservation targets for 81.3% of the terrestrial plant and vertebrate species considered. Our results provide a global assessment of where land could be optimally managed for conservation. We discuss how such a spatial prioritization framework can support the implementation of the biodiversity and climate conventions.


Assuntos
Carbono , Conservação dos Recursos Naturais , Animais , Biodiversidade , Espécies em Perigo de Extinção , Humanos , Vertebrados
19.
Conserv Biol ; 24(1): 70-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20121843

RESUMO

Climate change has created the need for a new strategic framework for conservation. This framework needs to include new protected areas that account for species range shifts and management that addresses large-scale change across international borders. Actions within the framework must be effective in international waters and across political frontiers and have the ability to accommodate large income and ability-to-pay discrepancies between countries. A global protected-area system responds to these needs. A fully implemented global system of protected areas will help in the transition to a new conservation paradigm robust to climate change and will ensure the integrity of the climate services provided by carbon sequestration from the world's natural habitats. The internationally coordinated response to climate change afforded by such a system could have significant cost savings relative to a system of climate adaptation that unfolds solely at a country level. Implementation of a global system is needed very soon because the effects of climate change on species and ecosystems are already well underway.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Cooperação Internacional
20.
Nature ; 427(6970): 145-8, 2004 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-14712274

RESUMO

Climate change over the past approximately 30 years has produced numerous shifts in the distributions and abundances of species and has been implicated in one species-level extinction. Using projections of species' distributions for future climate scenarios, we assess extinction risks for sample regions that cover some 20% of the Earth's terrestrial surface. Exploring three approaches in which the estimated probability of extinction shows a power-law relationship with geographical range size, we predict, on the basis of mid-range climate-warming scenarios for 2050, that 15-37% of species in our sample of regions and taxa will be 'committed to extinction'. When the average of the three methods and two dispersal scenarios is taken, minimal climate-warming scenarios produce lower projections of species committed to extinction ( approximately 18%) than mid-range ( approximately 24%) and maximum-change ( approximately 35%) scenarios. These estimates show the importance of rapid implementation of technologies to decrease greenhouse gas emissions and strategies for carbon sequestration.


Assuntos
Biodiversidade , Efeito Estufa , Modelos Teóricos , Animais , Carbono/metabolismo , Conservação dos Recursos Naturais , Geografia , Medição de Risco , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa