Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Inorg Chem ; 58(4): 2888-2898, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30730126

RESUMO

Lattice thermal expansion (LTE) has been investigated in double perovskites LaPbMSbO6 (M = Mn, Co, Ni). Ordinary LTE behavior with good thermal stability is identified for the Mn sample, whereas unusual LTE with a preferably expanded interplanar distance of (040) is revealed for Co and Ni samples. Temperature-dependent X-ray diffraction patterns ( T-XRD), Raman spectra ( T-Raman), and specific heat capacities ( T- Cp) consistently indicate that a rare isostructural displacive phase transition (IDPT) with a second-order phase transition nature is predominant near the critical temperature. Refinements of neutron powder diffraction (NPD) and in situ T-XRD data present temperature-sensitive bond parameters which are relevant to planar oxygen O1. X-ray photoelectron spectra (XPS) further confirm the Jahn-Teller (J-T) activated Co2+ (HS) or Ni3+ (HS/LS) cations at the B-site sublattice. This unusual LTE behavior could be understood by the cooperative J-T effect contributed by a Pb2+ ion and Co2+/Ni3+ ion from A- and B-site sublattices, respectively. The importance of 6s(Pb)-2p(O)-3d(Co/Ni) extended orbital hybridization on affecting thermal expansion behavior is highlighted on the basis of temperature-induced phonon mode softening. This study presents a microscopic description of connection between anisotropic thermal expansion and a cooperative J-T effect, which inspired exploration of thermal-mechanical coupled functional materials based on LaPbMSbO6 double perovskites.

2.
Ecotoxicol Environ Saf ; 91: 52-60, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23375439

RESUMO

In this study, bioaccumulation and sub-acute toxicity of water-borne nano-ZnO in the test fish, juvenvile carp (Cyprinus Carpio) were evaluated. To clarify the contribution of particle size and free Zn ion to NPs toxicity, its bulk counterparts (bulk-ZnO) and the released Zn(2+) were also tested. The results showed that after a 30-day exposure, 50mg/L of nano-ZnO and bulk-ZnO could be significantly accumulated and distributed in various tissues of fish, but nano-ZnO exhibited more hyper-bioaccumulation than bulk-ZnO. Liver and gill might be the target tissues with exposure to nano-ZnO, instead, the target tissue for bulk-ZnO might be intestine. Also, 50mg/L of nano-ZnO caused more severe histopathological changes than the same concentration of bulk-ZnO, which was in accordance with the induction of higher levels of intracellular oxidative stress. The effects of dissolved Zn ions were assessed and the ion toxicity was negligible herein. The results of this study indicated that the observed toxicities of nano-ZnO were not likely a result solely of particle dissolution and identified as a function of particle toxicity and the possibility for a size dependence. The main toxic mechanism of nano-ZnO was possibly by increasing cellular oxidative stress response.


Assuntos
Carpas/fisiologia , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxido de Zinco/metabolismo , Óxido de Zinco/toxicidade , Animais , Biomarcadores/análise , Carpas/metabolismo , Brânquias/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/química , Intestinos/efeitos dos fármacos , Íons/toxicidade , Fígado/química , Fígado/efeitos dos fármacos , Fígado/metabolismo , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Distribuição Tecidual
3.
Sheng Wu Gong Cheng Xue Bao ; 39(10): 4295-4307, 2023 Oct 25.
Artigo em Zh | MEDLINE | ID: mdl-37877406

RESUMO

We developed a method for accurate quantification of the intact virus particles in inactivated avian influenza virus feedstocks. To address the problem of impurities interference in the detection of inactivated avian influenza virus feedstocks by direct high performance size exclusion chromatography (HPSEC), we firstly investigated polyethylene glycol (PEG) precipitation and ion exchange chromatography (IEC) for H5N8 antigen purification. Under the optimized conditions, the removal rate of impurity was 86.87% in IEC using DEAE FF, and the viral hemagglutination recovery was 100%. HPSEC was used to analyze the pretreated samples. The peak of 8.5-10.0 min, which was the characteristic adsorption of intact virus, was analyzed by SDS-PAGE and dynamic light scattering. It was almost free of impurities and the particle size was uniform with an average particle size of 127.7 nm. After adding antibody to the IEC pretreated samples for HPSEC detection, the characteristic peak disappeared, indicating that IEC pretreatment effectively removed the impurities. By coupling HPSEC with multi-angle laser scattering technique (MALLS), the amount of intact virus particles in the sample could be accurately quantified with a good linear relationship between the number of virus particles and the chromatographic peak area (R2=0.997). The established IEC pretreatment-HPSEC-MALLS assay was applied to accurate detection of the number of intact virus particles in viral feedstocks of different subtypes (H7N9), different batches and different concentrations, all with good applicability and reproducibility, Relative standard deviation < 5%, n=3.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Animais , Reprodutibilidade dos Testes , Cromatografia em Gel , Vírion , Lasers
4.
Clin Neurophysiol ; 153: 46-56, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37454563

RESUMO

OBJECTIVE: To explore whether the EEG dynamics induced by zolpidem can predict consciousness evolution in patients with prolonged disorders of consciousness (PDOC). METHODS: We conducted a prospective explorative analysis on thirty-six patients with PDOC and eleven healthy controls. The EEG power spectrum was analyzed and categorized into 'ABCD' patterns at baseline and one hour after zolpidem administration at 10 mg. The clinical outcome was defined as consciousness improvement and no improvement six months after enrollment using the Coma Recovery Scale-Revised (CRS-R) score. RESULTS: Zolpidem administration significantly increased the EEG power in the delta & theta bands and decreased EEG power in the beta bands in healthy controls. Further follow-up studies indicated that the increased EEG beta-band power induced by zolpidem can predict an improved consciousness six months after enrollment with an area under the receiver operating characteristic curve (AUC) of 0.829, the sensitivity of 94.38% and an accuracy of 81.48%. CONCLUSIONS: Our work revealed that the specific EEG responses to zolpidem can predict consciousness recovery in PDOC patients. SIGNIFICANCE: The zolpidem-induced specific EEG responses could potentially predict the recovery of PDOC patients, which may help clinicians and patients' families in their decision-making process.


Assuntos
Transtornos da Consciência , Estado de Consciência , Humanos , Zolpidem , Estudos Prospectivos , Transtornos da Consciência/induzido quimicamente , Transtornos da Consciência/diagnóstico , Estado Vegetativo Persistente , Eletroencefalografia
5.
Brain Res ; 1798: 148162, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36375509

RESUMO

Functional near infrared spectroscopy (fNIRS) is an emerging non-invasive technique that allows bedside measurement of blood oxygenation level-dependent hemodynamic signals. We aimed to examine the efficacy of resting-state fNIRS in detecting the residual functional networks in patients with disorders of consciousness (DOC). We performed resting-state fNIRS in 23 DOC patients of whom 12 were in minimally conscious state (MCS) and 11 were in unresponsive wakefulness state (UWS). Ten regions of interest (ROIs) in the prefrontal cortex (PFC) were selected: both sides of Brodmann area (BA) 9, BA10, BA44, BA45, and BA46. Graph-theoretical analysis and seed-based correlation analyses were used to investigate the network topology and the strength of pairwise connections between ROIs and channels. MCS and UWS exhibited varying degrees of the loss of topological architecture, and the regional nodal properties of BA10 were significantly different between them (Nodal degree, PLeft BA10 = 0.01, PRight BA10 < 0.01; nodal efficiency, PLeft BA10 = 0.03, PRight BA10 < 0.01). Compared to healthy controls, UWS had impaired functions in both short- and long-distance connectivity, however, MCS had significantly impaired functions only in long-distance connectivity. The functional connectivity of right BA10 (AUC = 0.88) and the connections between left BA46 and right BA10 (AUC = 0.86) had excellent performance in differentiating MCS and UWS. MCS and UWS have different patterns of topological architecture and short- and long-distance connectivity in PFC. Intraconnections within BA10 and interhemispheric connections between BA10 and 46 are excellent resting-state fNIRS classifiers for distinguishing between MCS and UWS.


Assuntos
Encéfalo , Estado de Consciência , Humanos , Encéfalo/diagnóstico por imagem , Estado Vegetativo Persistente/diagnóstico , Córtex Pré-Frontal/diagnóstico por imagem , Vigília , Transtornos da Consciência/diagnóstico por imagem
6.
Cell Death Discov ; 9(1): 144, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142587

RESUMO

Refractory status epilepticus (RSE) is a neurological emergency where sustaining seizure causes severe neuronal death. Currently, there is no available neuroprotectant effective in RSE. Aminoprocalcitonin (NPCT) is a conserved peptide cleaved from procalcitonin, but its distribution and function in the brain remain enigmatic. Survival of neurons relies on sufficient energy supply. Recently, we found that NPCT was extensively distributed in the brain and had potent modulations on neuronal oxidative phosphorylation (OXPHOS), suggesting that NPCT might be involved in neuronal death by regulating energy status. In the present study, combining biochemical and histological methods, high-throughput RNA-sequence, Seahorse XFe analyser, an array of mitochondria function assays, and behavior-electroencephalogram (EEG) monitoring, we investigated the roles and translational values of NPCT in neuronal death after RSE. We found that NPCT was extensively distributed throughout gray matters in rat brain while RSE triggered NPCT overexpression in hippocampal CA3 pyramidal neurons. High-throughput RNA-sequence demonstrated that the influences of NPCT on primary hippocampal neurons were enriched in OXPHOS. Further function assays verified that NPCT facilitated ATP production, enhanced the activities of mitochondrial respiratory chain complexes I, IV, V, and increased neuronal maximal respiration capacity. NPCT exerted multiple neurotrophic effects including facilitating synaptogenesis, neuritogenesis, spinogenesis, and suppression of caspase-3. A polyclonal NPCT immunoneutralization antibody was developed to antagonize NPCT. In the in vitro 0-Mg2+ seizure model, immunoneutralization of NPCT caused more neuronal death, while exogenous NPCT supplementation, though did not reverse death outcomes, preserved mitochondrial membrane potential. In rat RSE model, both peripheral and intracerebroventricular immunoneutralization of NPCT exacerbated hippocampal neuronal death and peripheral immunoneutralization increased mortality. Intracerebroventricular immunoneutralization of NPCT further led to more serious hippocampal ATP depletion, and significant EEG power exhaustion. We conclude that NPCT is a neuropeptide regulating neuronal OXPHOS. During RSE, NPCT was overexpressed to protect hippocampal neuronal survival via facilitating energy supply.

7.
Int J Neural Syst ; 31(4): 2150002, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33357153

RESUMO

Very fast ripples (VFRs, 500-1000[Formula: see text]Hz) are considered more specific than high-frequency oscillations (80-500[Formula: see text]Hz) as biomarkers of epileptogenic zones. Although VFRs are frequent abnormal phenomena in epileptic seizures, their functional roles remain unclear. Here, we detected the VFRs in the hippocampal network and tracked their roles during status epilepticus (SE) in rats with pilocarpine-induced temporal lobe epilepsy (TLE). All regions in the hippocampal network exhibited VFRs in the baseline, preictal, ictal and postictal states, with the ictal state containing the most VFRs. Moreover, strong phase-locking couplings existed between VFRs and slow oscillations (1-12[Formula: see text]Hz) in the ictal and postictal states for all regions. Further investigation indicated that during VFRs, the build-up of slow oscillations in the ictal state began from the temporal lobe and then spread through the whole hippocampal network via two different pathways, which might be associated with the underlying propagation of epileptiform discharges in the hippocampal network. Overall, we provide a functional description of the emergence of VFRs in the hippocampal network during SE, and we also establish that VFRs may be the physiological representation of the pathological alterations in hippocampal network activity during SE in TLE.


Assuntos
Ondas Encefálicas , Epilepsia do Lobo Temporal , Estado Epiléptico , Animais , Hipocampo , Pilocarpina/toxicidade , Ratos
8.
Materials (Basel) ; 13(4)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092845

RESUMO

In this work, a CuCe alloy was prepared using a directional solidification method at a series of withdrawal rates of 100, 25, 10, 8, and 5 µm/s. We found that the primary phase microstructure transforms from cellular crystals to cellular peritectic coupled growth and eventually, changes into dendrites as the withdrawal rate increases. The phase constituents in the directionally solidified samples were confirmed to be Cu2Ce, CuCe, and CuCe + Ce eutectics. The primary dendrite spacing was significantly refined with an increasing withdrawal rate, resulting in higher compressive strength and strain. Moreover, the cellular peritectic coupled growth at 10 µm/s further strengthened the alloy, with its compressive property reaching the maximum value of 266 MPa. Directional solidification was proven to be an impactful method to enhance the mechanical properties and produce well-aligned in situ composites in peritectic systems.

9.
Chem Commun (Camb) ; (23): 3460-2, 2009 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-19503904

RESUMO

Ti(70)Zr(10)Co(20) containing an icosahedral quasicrystalline phase has been fabricated, and presents high activity and selectivity in catalyzing the oxidation of cyclohexane with oxygen under solvent-free conditions.

10.
Materials (Basel) ; 12(19)2019 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-31569520

RESUMO

This work aims to improve the properties of aluminum foams including the mechanical properties and corrosion resistance by electrodepositing a SiC/TiN nanoparticles reinforced Ni-Mo coating on the substrate. The coatings were electrodeposited at different voltages, and the morphologies of the coating were detected by SEM (scanning electron microscope) to determine the most suitable voltage. We used XRD (x-ray diffraction) and TEM (transmission electron microscope) to analyze the structure of the coatings. The aluminum foams and the substrates on which the coatings were electrodeposited at a voltage of 6.0 V for different electrodeposition times were compressed on an MTS (an Electro-mechanical Universal Testing Machine) to detect the mechanical properties. The corrosion resistance before and after the electrodeposition experiment was also examined. The results showed that the coating effectively improved the mechanical properties. When the electrodeposition time was changed from 10 min to 40 min, the Wv of the aluminum foams increased from 0.852 J to 2.520 J and the σs increased from 1.06 MPa to 2.99 MPa. The corrosion resistance of the aluminum foams was significantly improved after being coated with the Ni-Mo-SiC-TiN nanocomposite coating. The self-corrosion potential, pitting potential, and potential for primary passivation were positively shifted by 294 mV, 99 mV, and 301 mV, respectively. The effect of nanoparticles on the corrosion resistance of the coatings is significant.

11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2667-2670, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946444

RESUMO

This paper proposes the potential extension of Ensemble Empirical Mode Decomposition based Causal Decomposition (EEMD-CD) to the physiological system. The neural basis of Volitional Motor Control (VMC), resulting in skilled motor behaviors through a connected interaction between limb biomechanical properties and Central Neural System (CNS), has been well documented. Specifically, the Primary Motor Cortex (M1) contributes volitional and goal-directed limb movements in terms of motor planning and motor behavior. The actual applications of causality detection approaches were still dominated by the prediction concept, i.e., Granger Causality (GC). This study concerns clearly some of components of M1 regulating motor properties of upper limbs, and holds the neuroscience finding from which the bi-directional causal interaction in brain and muscles has been concluded. The study performs an experiment by which Electromyography (EMG) of limb muscles and Electroencephalography (EEG) across from prefrontal cortex to M1, were synchronously acquired during wrist extensions. It also provides a valid example of how the casuality can be approached by EEMD-CD and offers a first step in the identification of casual relationship in mutual physiological systems.


Assuntos
Córtex Motor/fisiologia , Movimento , Músculo Esquelético/fisiologia , Processamento de Sinais Assistido por Computador , Eletroencefalografia , Eletromiografia , Humanos , Extremidade Superior , Punho
12.
Colloids Surf B Biointerfaces ; 102: 321-6, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23018022

RESUMO

Magnesium alloys are potential biodegradable implants because of their outstanding biological performance and biodegradability in the bioenvironment. However, the rapid corrosion of magnesium and its alloys in human body fluids or blood plasma limits their clinical application. In the present work, we first fabricated porous micro-arc oxidation (MAO) coatings containing Ca/P on the magnesium alloy substrate by conducting MAO in the electrolyte containing calcium gluconate. Subsequently, hydroxyapatite (HA) coatings were prepared using electrochemical deposition (ECD) on the MAO coatings. Finally, a MAO/ECD composite coating was successfully fabricated on the magnesium alloy. The phase, morphology and composition of the biological coatings were monitored with X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy, and corrosion resistance was evaluated by means of electrochemical methods in a simulated body fluid. The experimental results indicated that the formation of HA-containing composite coatings on magnesium alloy effectively decreases its corrosion rate and more importantly endows it with a potential bioactivity. We believe that the combined use of MAO and ECD to modify magnesium alloys would make them more attractive for clinical applications.


Assuntos
Ligas/química , Magnésio/química , Durapatita/química , Eletroquímica , Microscopia Eletrônica de Varredura , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa