Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 32(7): 12012-12023, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571036

RESUMO

We demonstrated a narrow linewidth semiconductor laser based on a deep-etched sidewall grating active distributed Bragg reflector (SG-ADBR). The coupling coefficients and reflectance were numerically simulated for deep-etched fifth-order SG-ADBR, and a reflectance of 0.86 with a bandwidth of 1.04 nm was obtained by the finite element method for a 500-period SG-ADBR. Then the fifth-order SG-ADBR lasers were fabricated using projection i-line lithography processes. Single-mode lasing at 1537.9 nm was obtained with a high side-mode suppression ratio (SMSR) of 65 dB, and a continuous tuning range of 10.3 nm was verified with SMSRs greater than 53 dB. Furthermore, the frequency noise power spectral density was characterized, from which a Lorentzian linewidth of 288 kHz was obtained.

2.
Opt Express ; 31(8): 12200-12211, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157384

RESUMO

A narrow linewidth optical frequency comb (OFC) based on a directly modulated microcavity laser with external optical feedback is investigated numerically and demonstrated experimentally. Based on the numerical simulations with rate equations, the evolution of the optical and electrical spectra is presented for the direct-modulated microcavity laser with increased feedback strength, and the linewidth property is improved at suitable feedback conditions. The simulation results also show good robustness for the generated OFC in terms of feedback strength and phase. Moreover, the OFC generation experiment is performed by combining with the dual-loop feedback structure to suppress the side mode, and an OFC with a side-mode suppression ratio of 31 dB is realized. Thanks to the high electro-optical response of the microcavity laser, a 15-tone OFC with a frequency interval of 10 GHz is obtained. Finally, the linewidth of each comb tooth is measured to be around 7 kHz under the feedback power of 47 µW, which indicates an enormous compression of approximately 2000 times compared with the free-running continuous-wave microcavity laser.

3.
Opt Express ; 31(9): 14560-14569, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157317

RESUMO

A waveguide-connected deformed circular-side triangular microresonator is proposed and fabricated. Room temperature unidirectional light emission is experimentally demonstrated in the far-field pattern with a divergence angle of 38°. Single mode lasing at 1545.4 nm is realized at an injection current of 12 mA. The emission pattern changes drastically upon the binding of a nanoparticle with radius down to several nanometers, predicting applications in electrically pumped, cost-effective, portable and highly sensitive far-field detection of nanoparticles.

4.
Opt Lett ; 48(7): 1874-1877, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221788

RESUMO

We propose and demonstrate deformed square cavity microlasers for realizing highly efficient output from a connected waveguide. The square cavities are deformed asymmetrically by replacing two adjacent flat sides with circular arcs to manipulate the ray dynamics and couple the light to the connected waveguide. The numerical simulations show that the resonant light can efficiently couple to the fundamental mode of the multi-mode waveguide by carefully designing the deformation parameter utilizing global chaos ray dynamics and internal mode coupling. An enhancement of approximately six times in the output power is realized in the experiment compared to the non-deformed square cavity microlasers, while the lasing thresholds are reduced by about 20%. The measured far-field pattern shows highly unidirectional emission agreeing well with the simulation, which confirms the feasibility of the deformed square cavity microlasers for practical applications.

5.
Appl Opt ; 62(8): 2130-2136, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133102

RESUMO

A multiwavelength Brillouin fiber laser (MBFL) with a switchable channel spacing is demonstrated using a 1.55-µm single-mode AlGaInAs/InP hybrid square-rectangular laser as a seeding source. The scheme employs a highly nonlinear fiber loop with a feedback path to generate a 10-GHz-spacing MBFL. Then, assisted by a tunable optical bandpass filter, MBFLs with spacing from 20 GHz to 100 GHz at a step of 10 GHz are generated in another highly nonlinear fiber loop based on the cavity-enhanced four-wave mixing. More than 60 lasing lines with an optical signal-to-noise ratio over 10 dB are obtained successfully in all the switchable spacings. The total output power and the channel spacing of the MBFLs are proved to be stable.

6.
Opt Express ; 30(25): 45459-45470, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522951

RESUMO

The nonlinear dynamical behaviors of a semiconductor microcavity laser with frequency comb injection have been experimentally and numerically investigated. The microcavity laser is harmonically locked to a unit fraction of the comb spacing due to the undamped relaxation oscillation at certain conditions, creating additional comb lines with reduced frequency spacing. The stability maps indicating various locking states are obtained based on rate equations, which demonstrates that the locking regions are closely related to the relaxation oscillation. Moreover, the microcavity laser with comb injection leads to spectral broadening of the original comb and the number of comb lines raises from 3 to 13. Owing to the large modulation bandwidth of the microcavity laser, the comb lines and the frequency spacing can be tailored over a wide range by varying the injection parameters.

7.
Opt Express ; 29(24): 39685-39695, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34809326

RESUMO

We propose and demonstrate a circular-side octagonal microcavity (COM) semiconductor laser with a spatially distributed current injection for manipulating the lasing modes. There are two types of high-quality-factor whispering-gallery (WG) modes with distinct field patterns in a COM: the four-bounced quadrilateral modes and the eight-bounced octagonal modes. By designing two separated p-electrodes, the COM laser is divided into two regions that are pumped independently to select specific modes for lasing. The two types of WG modes lase simultaneously when the two regions are injected with equivalent currents. Degeneracy removal of the quadrilateral modes is observed in both simulation and experiment when the two regions are injected with inequivalent currents. The quadrilateral modes are suppressed when one of the two regions is un-injected or biased with a negative current, and single-octagonal-mode lasing is realized. The results show that the lasing modes can be efficiently manipulated with the spatially distributed current injection considering the distinct field patterns of different WG modes in the microcavities, which can promote the practical application of the microcavity lasers.

8.
Opt Lett ; 46(9): 2115-2118, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33929431

RESUMO

In this Letter, we design and realize a hybrid-cavity laser with single- or dual-mode lasing states and study the nonlinear states of the laser under external optical feedback (EOF). The laser at a dual-mode state easily and directly enters the chaotic state without periodic oscillation states and display chaos for a much wider range of the EOF magnitude than the laser at a single-mode state. A flat chaotic signal is obtained for the laser at a dual-mode lasing state under a weak EOF benefitting from the low-frequency energy enhancement caused by mode competition between the dual modes.

9.
J Opt Soc Am A Opt Image Sci Vis ; 38(6): 808-816, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143150

RESUMO

All-optical switch and multiple logic gates have been demonstrated using a hybrid-cavity semiconductor laser composed of a square microcavity and a Fabry-Perot cavity experimentally. In this paper, two-section tri-mode rate equations with optical injection terms are proposed and applied to study all-optical logic gates of NOT, NOR, and NAND operations utilizing the hybrid-cavity laser. Steady-state and dynamical characteristics of all-optical multiple logic gates are simulated, taking into account the influence of mode frequency detuning, gain suppression coefficients, mode Q factor, injection energy, and biasing current. All-optical logic NOT, NOR, and NAND gates up to 20, 15, and 20 Gbit/s are obtained numerically with dynamic extinction ratios of over 20, 20, and 10 dB, respectively, which are potential response speeds of the all-optical logic gates based on the hybrid-cavity semiconductor lasers.

10.
Opt Express ; 28(24): 36784-36795, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379764

RESUMO

We theoretically and numerically study optical modes in regular-polygonal microcavities with non-uniform gain and loss, where high quality (Q) whispering-gallery-like modes typically appear as superscar states. High Q superscar modes can be described by the propagating plane waves in an effective rectangle formed by unfolding the periodic orbits and exhibit regular and predictable spatial field distributions and transverse-mode spectra. With non-uniform gain and loss, anti-Hermitian coupling between the transverse modes with close frequencies occurs according to the mode coupling theory, which results in novel mode properties such as modified mode spectra and field patterns, and the appearance of exceptional points. Numerical simulation results are in good agreement with the theoretical analyses, and such analyses are also suitable for other kinds of high Q microcavities with non-uniform gain and loss. These results will be highly useful for studying non-Hermitian physics in optical microcavities and advancing the practical applications of microcavity devices.

11.
Opt Express ; 26(8): 9409-9414, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715893

RESUMO

Spectral engineering has been demonstrated for the circular-side square microlasers with an output waveguide butt-coupled to one vertex. By carefully optimizing deformation parameter and waveguide connection angle, undesired high-order transverse modes are suppressed while the mode Q factors and the transverse-mode intervals are enhanced simultaneously for the low-order transverse modes. Dual-mode lasing with pure lasing spectra is realized experimentally for the circular-side square microlasers with side lengths of 16 µm, and the transverse mode intervals can be adjusted from 0.54 to 5.4 nm by changing the deformation parameter. Due to the enhanced mode confinement, single-mode lasing with a side-mode suppression-ratio of 36 dB is achieved for a 10µm-side-length circular-side square microlaser with a 1.5µm-wide waveguide.

12.
Opt Express ; 26(24): 31784-31793, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650758

RESUMO

We propose and demonstrate an optoelectronic oscillator with a directly modulated AlGaInAs/InP integrated twin-square microlaser for generating wideband frequency-tunable microwave signals with low phase noise. Apart from the relaxation oscillation peak, the modulation response of the twin-square microlaser working at the mutual optical injection state exhibits a significant enhancement around the beating frequency of the lasing modes in the two square cavities owing to the photon-photon resonance. A self-sustaining oscillation can be generated around the modulation response peak with the lowest loop loss occurring at the relaxation oscillation frequency or the beating frequency, depending on the practical state of the twin-square microlaser. High-quality tunable microwave signals ranging from 2.22 to 19.52 GHz are generated with single sideband phase noises below -110 dBc/Hz at the 10 kHz offset frequency and side-mode suppression ratios of approximately 40 dB by tuning the injection currents of the twin-square microlaser.

13.
Opt Lett ; 43(17): 4069-4072, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30160718

RESUMO

An effective method for millimeter-wave (mmW) carrier generation from a dual-transverse-mode microsquare laser is experimentally demonstrated. By directly modulating the dual-mode microsquare laser at 6.7 GHz, multiple sidebands are generated due to enhanced modulation nonlinearity, and the lasing modes with an interval of 40 GHz are phase-locked. MmW carriers up to 47 GHz, corresponding to seven times that of the modulation frequency, are achieved with a linewidth below 10 Hz. The single-sideband phase noises of the signals keep the same level after transmission over 2.5 km of optical fiber.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa