Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(12): 1597-1610, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046889

RESUMO

The dynamics of CD4+ T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4+ T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (TH1) and follicular helper T (TFH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated TH1 and TFH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between TFH and central memory were revealed, with antimalarials modulating these responses and boosting TH1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4+ T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations ( http://haquelab.mdhs.unimelb.edu.au/cd4_memory/ ).


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Memória Imunológica , Malária/imunologia , Plasmodium/imunologia , Transcriptoma , Transferência Adotiva , Animais , Antimaláricos/farmacologia , Biomarcadores , Cromatina/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Malária/parasitologia , Malária/terapia , Camundongos , Plasmodium/efeitos dos fármacos
2.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839608

RESUMO

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Malária/imunologia , Proteínas de Membrana/metabolismo , Plasmodium/fisiologia , Animais , Células Cultivadas , Citotoxicidade Imunológica , Modelos Animais de Doenças , Exocitose , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Vesículas Secretórias/metabolismo
4.
Cell ; 145(3): 335-6, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21529707

RESUMO

Although a link between sickle cell disease and resistance to severe malaria is well established, the biochemical relationship between the two is unknown. Ferreira et al. (2011) show that carriers of the sickle cell mutation increase expression of the heme oxygenase-1 enzyme, which produces antioxidant molecules that may prevent severe disease symptoms.

5.
Infect Immun ; 91(11): e0031723, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37882531

RESUMO

Bacterial urinary tract infections (UTIs) are both common and exhibit high recurrence rates in women. UTI healthcare costs are increasing due to the rise of multidrug-resistant (MDR) bacteria, necessitating alternative approaches for infection control. Here, we directly observed host adaptive immune responses in acute UTI. We employed a mouse model in which wild-type C57BL/6J mice were transurethrally inoculated with a clinically relevant MDR UTI strain of uropathogenic Escherichia coli (UPEC). Firstly, we noted that rag1-/- C57BL/6J mice harbored larger bacterial burdens than wild-type counterparts, consistent with a role for adaptive immunity in UTI control. Consistent with this, UTI triggered in the bladders of wild-type mice early increases of myeloid cells, including CD11chi conventional dendritic cells, suggesting possible involvement of these professional antigen-presenting cells. Importantly, germinal center B cell responses developed by 4 weeks post-infection in bladder-draining lymph nodes of wild-type mice and, although modest in magnitude and transient in nature, could not be boosted with a second UTI. Thus, our data reveal for the first time in a mouse model that UPEC UTI induces local B cell immune responses in bladder-draining lymph nodes, which could potentially serve to control infection.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Sistema Urinário , Escherichia coli Uropatogênica , Humanos , Feminino , Camundongos , Animais , Bexiga Urinária/microbiologia , Infecções por Escherichia coli/microbiologia , Camundongos Endogâmicos C57BL , Infecções Urinárias/microbiologia , Centro Germinativo , Sistema Urinário/microbiologia
6.
Malar J ; 21(1): 49, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35172826

RESUMO

BACKGROUND: Artemisinin-based combination therapy (ACT) has been a mainstay for malaria prevention and treatment. However, emergence of drug resistance has incentivised development of new drugs. Defining the kinetics with which circulating parasitized red blood cells (pRBC) are lost after drug treatment, referred to as the "parasite clearance curve", has been critical for assessing drug efficacy; yet underlying mechanisms remain partly unresolved. The clearance curve may be shaped both by the rate at which drugs kill parasites, and the rate at which drug-affected parasites are removed from circulation. METHODS: In this context, two anti-malarials, SJ733, and an ACT partner drug, pyronaridine were compared against sodium artesunate in mice infected with Plasmodium berghei (strain ANKA). To measure each compound's capacity for pRBC removal in vivo, flow cytometric monitoring of a single cohort of fluorescently-labelled pRBC was employed, and combined with ex vivo parasite culture to assess parasite maturation and replication. RESULTS: These three compounds were found to be similarly efficacious in controlling established infection by reducing overall parasitaemia. While sodium artesunate acted relatively consistently across the life-stages, single-dose SJ733 elicited a biphasic effect, triggering rapid, partly phagocyte-dependent removal of trophozoites and schizonts, followed by arrest of residual ring-stages. In contrast, pyronaridine abrogated maturation of younger parasites, with less pronounced effects on mature parasites, while modestly increasing pRBC removal. CONCLUSIONS: Anti-malarials SJ733 and pyronaridine, though similarly efficacious in reducing overall parasitaemia in mice, differed markedly in their capacity to arrest replication and remove pRBC from circulation. Thus, similar parasite clearance curves can result for anti-malarials with distinct capacities to inhibit, kill and clear parasites.


Assuntos
Antimaláricos , Malária , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Combinação de Medicamentos , Compostos Heterocíclicos de 4 ou mais Anéis , Isoquinolinas , Malária/tratamento farmacológico , Malária/parasitologia , Camundongos , Naftiridinas
7.
Immunol Rev ; 285(1): 168-193, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30129195

RESUMO

Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.


Assuntos
Interações Hospedeiro-Patógeno , Estágios do Ciclo de Vida/fisiologia , Malária Falciparum/imunologia , Modelos Imunológicos , Plasmodium falciparum/fisiologia , Animais , Biologia Computacional , Modelos Animais de Doenças , Resistência a Medicamentos , Ásia Oriental/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/microbiologia , Modelos Teóricos
8.
PLoS Pathog ; 15(2): e1007599, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30811498

RESUMO

Plasmodium parasites invade and multiply inside red blood cells (RBC). Through a cycle of maturation, asexual replication, rupture and release of multiple infective merozoites, parasitised RBC (pRBC) can reach very high numbers in vivo, a process that correlates with disease severity in humans and experimental animals. Thus, controlling pRBC numbers can prevent or ameliorate malaria. In endemic regions, circulating parasite-specific antibodies associate with immunity to high parasitemia. Although in vitro assays reveal that protective antibodies could control pRBC via multiple mechanisms, in vivo assessment of antibody function remains challenging. Here, we employed two mouse models of antibody-mediated immunity to malaria, P. yoelii 17XNL and P. chabaudi chabaudi AS infection, to study infection-induced, parasite-specific antibody function in vivo. By tracking a single generation of pRBC, we tested the hypothesis that parasite-specific antibodies accelerate pRBC clearance. Though strongly protective against homologous re-challenge, parasite-specific IgG did not alter the rate of pRBC clearance, even in the presence of ongoing, systemic inflammation. Instead, antibodies prevented parasites progressing from one generation of RBC to the next. In vivo depletion studies using clodronate liposomes or cobra venom factor, suggested that optimal antibody function required splenic macrophages and dendritic cells, but not complement C3/C5-mediated killing. Finally, parasite-specific IgG bound poorly to the surface of pRBC, yet strongly to structures likely exposed by the rupture of mature schizonts. Thus, in our models of humoral immunity to malaria, infection-induced antibodies did not accelerate pRBC clearance, and instead co-operated with splenic phagocytes to block subsequent generations of pRBC.


Assuntos
Malária/imunologia , Malária/metabolismo , Plasmodium/crescimento & desenvolvimento , Animais , Anticorpos Antiprotozoários/metabolismo , Modelos Animais de Doenças , Eritrócitos/microbiologia , Eritrócitos/fisiologia , Humanos , Camundongos , Parasitos , Fagócitos , Plasmodium/metabolismo , Plasmodium/patogenicidade , Plasmodium chabaudi/imunologia , Plasmodium chabaudi/patogenicidade , Plasmodium yoelii/imunologia , Plasmodium yoelii/patogenicidade
9.
J Immunol ; 200(6): 1965-1975, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507121

RESUMO

CD4+ Th cell differentiation is crucial for protecting against blood-stage Plasmodium parasites, the causative agents of malaria. It has been known for decades that more than one type of Th cell develops during this infection, with early models proposing a biphasic Th1/Th2 model of differentiation. Over the past decade, a large body of research, in particular, reports over the past 2-3 y, have revealed substantial complexity in the Th differentiation program during Plasmodium infection. In this article, we review how several studies employing mouse models of malaria, and recent human studies, have redefined the process of Th differentiation, with a particular focus on Th1 and T follicular helper (Tfh) cells. We review the molecular mechanisms that have been reported to modulate Th1/Tfh differentiation, and propose a model of Th1/Tfh differentiation that accommodates observations from all recent murine and human studies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Malária/imunologia , Células Th1/imunologia , Animais , Humanos , Ativação Linfocitária/imunologia , Plasmodium/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
10.
J Immunol ; 201(11): 3362-3372, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30355785

RESUMO

The outcome of intracellular parasitic infection can be determined by the immunoregulatory activities of natural regulatory CD4+ Foxp3+ T (Treg) cells and the anti-inflammatory cytokine IL-10. These mechanisms protect tissue but can also suppress antiparasitic CD4+ T cell responses. The specific contribution of these regulatory pathways during human parasitic diseases remains unclear. In this study, we investigated the roles of Treg cells and IL-10 during experimental visceral leishmaniasis caused by Leishmania donovani infection of C57BL/6 mice. We report only a limited contribution of Treg cells in suppressing antiparasitic immunity, but important roles in delaying the development of splenic pathology and restricting leukocyte expansion. We next employed a range of cell-specific, IL-10- and IL-10R-deficient mice and found these Treg cell functions were independent of IL-10. Instead, conventional CD4+ T cells and dendritic cells were the most important cellular sources of IL-10, and the absence of IL-10 in either cell population resulted in greater control of parasite growth but also caused accelerated breakdown in splenic microarchitecture. We also found that T cells, dendritic cells, and other myeloid cells were the main IL-10-responding cells because in the absence of IL-10R expression by these cell populations, there was greater expansion of parasite-specific CD4+ T cell responses associated with improved control of parasite growth. Again, however, there was also an accelerated breakdown in splenic microarchitecture in these animals. Together, these findings identify distinct, cell-specific, immunoregulatory networks established during experimental visceral leishmaniasis that could be manipulated for clinical advantage.


Assuntos
Interleucina-10/metabolismo , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Baço/imunologia , Linfócitos T Reguladores/imunologia , Animais , Antígenos CD4/metabolismo , Células Cultivadas , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunomodulação , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais
11.
J Immunol ; 200(4): 1443-1456, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29321276

RESUMO

Differentiation of CD4+ Th cells is critical for immunity to malaria. Several innate immune signaling pathways have been implicated in the detection of blood-stage Plasmodium parasites, yet their influence over Th cell immunity remains unclear. In this study, we used Plasmodium-reactive TCR transgenic CD4+ T cells, termed PbTII cells, during nonlethal P. chabaudi chabaudi AS and P. yoelii 17XNL infection in mice, to examine Th cell development in vivo. We found no role for caspase1/11, stimulator of IFN genes, or mitochondrial antiviral-signaling protein, and only modest roles for MyD88 and TRIF-dependent signaling in controlling PbTII cell expansion. In contrast, IFN regulatory factor 3 (IRF3) was important for supporting PbTII expansion, promoting Th1 over T follicular helper (Tfh) differentiation, and controlling parasites during the first week of infection. IRF3 was not required for early priming by conventional dendritic cells, but was essential for promoting CXCL9 and MHC class II expression by inflammatory monocytes that supported PbTII responses in the spleen. Thereafter, IRF3-deficiency boosted Tfh responses, germinal center B cell and memory B cell development, parasite-specific Ab production, and resolution of infection. We also noted a B cell-intrinsic role for IRF3 in regulating humoral immune responses. Thus, we revealed roles for IRF3 in balancing Th1- and Tfh-dependent immunity during nonlethal infection with blood-stage Plasmodium parasites.


Assuntos
Diferenciação Celular/imunologia , Fator Regulador 3 de Interferon/imunologia , Malária/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Animais , Feminino , Centro Germinativo/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Baço/imunologia
12.
Proc Natl Acad Sci U S A ; 114(29): 7701-7706, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673996

RESUMO

Severe malaria and associated high parasite burdens occur more frequently in humans lacking robust adaptive immunity to Plasmodium falciparum Nevertheless, the host may partly control blood-stage parasite numbers while adaptive immunity is gradually established. Parasite control has typically been attributed to enhanced removal of parasites by the host, although in vivo quantification of this phenomenon remains challenging. We used a unique in vivo approach to determine the fate of a single cohort of semisynchronous, Plasmodium berghei ANKA- or Plasmodium yoelii 17XNL-parasitized red blood cells (pRBCs) after transfusion into naive or acutely infected mice. As previously shown, acutely infected mice, with ongoing splenic and systemic inflammatory responses, controlled parasite population growth more effectively than naive controls. Surprisingly, however, this was not associated with accelerated removal of pRBCs from circulation. Instead, transfused pRBCs remained in circulation longer in acutely infected mice. Flow cytometric assessment and mathematical modeling of intraerythrocytic parasite development revealed an unexpected and substantial slowing of parasite maturation in acutely infected mice, extending the life cycle from 24 h to 40 h. Importantly, impaired parasite maturation was the major contributor to control of parasite growth in acutely infected mice. Moreover, by performing the same experiments in rag1-/- mice, which lack T and B cells and mount weak inflammatory responses, we revealed that impaired parasite maturation is largely dependent upon the host response to infection. Thus, impairment of parasite maturation represents a host-mediated, immune system-dependent mechanism for limiting parasite population growth during the early stages of an acute blood-stage Plasmodium infection.


Assuntos
Interações Hospedeiro-Parasita , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Plasmodium berghei/fisiologia , Plasmodium falciparum/fisiologia , Imunidade Adaptativa , Animais , Citocinas/metabolismo , Eritrócitos/parasitologia , Feminino , Citometria de Fluxo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Sistema Imunitário , Inflamação , Malária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Teóricos , Plasmodium yoelii/fisiologia
13.
Immunol Cell Biol ; 97(7): 617-624, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31120158

RESUMO

The ability of circulating CD4+ T cells to retain memories of previous antigenic encounters is a cardinal feature of the adaptive immune system. Over the past two decades, since the first description of central and effector memory T cells, many studies have examined molecular mechanisms controlling CD8+ T-cell memory, with comparatively less research into CD4+ T-cell memory. Here, we review a number of seminal studies showing that circulating memory CD4+ T cells develop directly from effector cells; and in so doing, preserve features of their effector precursors. We examine mechanisms controlling the development and phenotypes of memory CD4+ T cells, and provide an updated model that accommodates both the central and effector memory paradigm and the diverse T helper cell classification system.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Memória Imunológica , Animais , Biomarcadores , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Metabolismo Energético , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Modelos Biológicos , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Transcrição Gênica
14.
Malar J ; 18(1): 312, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533836

RESUMO

BACKGROUND: Anaemia is a major consequence of malaria, caused by the removal of both infected and uninfected red blood cells (RBCs) from the circulation. Complement activation and reduced expression of complement regulatory proteins (CRPs) on RBCs are an important pathogenic mechanism in severe malarial anaemia in both Plasmodium falciparum and Plasmodium vivax infection. However, little is known about loss of CRPs on RBCs during mild malarial anaemia and in low-density infection. METHODS: The expression of CRP CR1, CD55, CD59, and the phagocytic regulator CD47, on uninfected normocytes and reticulocytes were assessed in individuals from two study populations: (1) P. falciparum and P. vivax-infected patients from a low transmission setting in Sabah, Malaysia; and, (2) malaria-naïve volunteers undergoing P. falciparum induced blood-stage malaria (IBSM). For clinical infections, individuals were categorized into anaemia severity categories based on haemoglobin levels. For IBSM, associations between CRPs and haemoglobin level were investigated. RESULTS: CRP expression on RBC was lower in Malaysian individuals with P. falciparum and P. vivax mild malarial anaemia compared to healthy controls. CRP expression was also reduced on RBCs from volunteers during IBSM. Reduction occurred on normocytes and reticulocytes. However, there was no significant association between reduced CRPs and haemoglobin during IBSM. CONCLUSIONS: Removal of CRPs occurs on both RBCs and reticulocytes during Plasmodium infection even in mild malarial anaemia and at low levels of parasitaemia.


Assuntos
Anemia/parasitologia , Proteínas do Sistema Complemento/genética , Eritrócitos/metabolismo , Malária Falciparum/complicações , Malária Vivax/complicações , Adulto , Proteínas do Sistema Complemento/metabolismo , Eritrócitos/parasitologia , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Malásia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Adulto Jovem
15.
J Immunol ; 199(12): 4165-4179, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29084838

RESUMO

We describe an MHC class II (I-Ab)-restricted TCR transgenic mouse line that produces CD4+ T cells specific for Plasmodium species. This line, termed PbT-II, was derived from a CD4+ T cell hybridoma generated to blood-stage Plasmodium berghei ANKA (PbA). PbT-II cells responded to all Plasmodium species and stages tested so far, including rodent (PbA, P. berghei NK65, Plasmodium chabaudi AS, and Plasmodium yoelii 17XNL) and human (Plasmodium falciparum) blood-stage parasites as well as irradiated PbA sporozoites. PbT-II cells can provide help for generation of Ab to P. chabaudi infection and can control this otherwise lethal infection in CD40L-deficient mice. PbT-II cells can also provide help for development of CD8+ T cell-mediated experimental cerebral malaria (ECM) during PbA infection. Using PbT-II CD4+ T cells and the previously described PbT-I CD8+ T cells, we determined the dendritic cell (DC) subsets responsible for immunity to PbA blood-stage infection. CD8+ DC (a subset of XCR1+ DC) were the major APC responsible for activation of both T cell subsets, although other DC also contributed to CD4+ T cell responses. Depletion of CD8+ DC at the beginning of infection prevented ECM development and impaired both Th1 and follicular Th cell responses; in contrast, late depletion did not affect ECM. This study describes a novel and versatile tool for examining CD4+ T cell immunity during malaria and provides evidence that CD4+ T cell help, acting via CD40L signaling, can promote immunity or pathology to blood-stage malaria largely through Ag presentation by CD8+ DC.


Assuntos
Apresentação de Antígeno , Linfócitos T CD4-Positivos/imunologia , Antígenos CD40/imunologia , Células Dendríticas/imunologia , Malária/imunologia , Camundongos Transgênicos/imunologia , Parasitemia/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Antígenos de Protozoários/imunologia , Antígenos CD40/deficiência , Ligante de CD40/imunologia , Células Cultivadas , Cruzamentos Genéticos , Hibridomas , Ativação Linfocitária , Malária Cerebral/imunologia , Malária Cerebral/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos/genética , Plasmodium berghei/imunologia , Quimera por Radiação
16.
Immunology ; 155(2): 176-185, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29908067

RESUMO

Type I interferons (IFNs) are a family of cytokines with a wide range of biological activities including anti-viral and immune-regulatory functions. Here, we focus on the protozoan parasitic disease malaria, and examine the effects of type I IFN-signalling during Plasmodium infection of humans and experimental mice. Since the 1960s, there have been many studies in this area, but a simple explanation for the role of type I IFN has not emerged. Although epidemiological data are consistent with roles for type I IFN in influencing malaria disease severity, functional proof of this remains sparse in humans. Several different rodent-infective Plasmodium species have been employed in in vivo studies of parasite-sensing, experimental cerebral malaria, lethal malaria, liver-stage infection, and adaptive T-cell and B-cell immunity. A range of different outcomes in these studies suggests a delicately balanced, multi-faceted and highly complex role for type I IFN-signalling in malaria. This is perhaps unsurprising given the multiple parasite-sensing pathways that can trigger type I IFN production, the multiple isoforms of IFN-α/ß that can be produced by both immune and non-immune cells, the differential effects of acute versus chronic type I IFN production, the role of low level 'tonic' type I IFN-signalling, and that signalling can occur via homodimeric IFNAR1 or heterodimeric IFNAR1/2 receptors. Nevertheless, the data indicate that type I IFN-signalling controls parasite numbers during liver-stage infection, and depending on host-parasite genetics, can be either detrimental or beneficial to the host during blood-stage infection. Furthermore, type I IFN can promote cytotoxic T lymphocyte immune pathology and hinder CD4+ T helper cell-dependent immunity during blood-stage infection. Hence, type I IFN-signalling plays highly context-dependent roles in malaria, which can be beneficial or detrimental to the host.


Assuntos
Interferon Tipo I/metabolismo , Malária/imunologia , Malária/metabolismo , Malária/parasitologia , Plasmodium/imunologia , Imunidade Adaptativa , Animais , Modelos Animais de Doenças , Humanos , Imunomodulação , Estágios do Ciclo de Vida/imunologia , Malária Cerebral/imunologia , Malária Cerebral/metabolismo , Malária Cerebral/parasitologia , Plasmodium/crescimento & desenvolvimento , Transdução de Sinais
18.
Microcirculation ; 25(3): e12441, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29356218

RESUMO

OBJECTIVE: The aim of this study was to assess, in two experiments, the safety and efficacy of the PFC emulsion Oxycyte as an oxygen therapeutic for TBI to test the hypothesis that early administration of this oxygen-carrying fluid post-TBI would improve brain tissue oxygenation (Pbt O2 ). METHODS: The first experiment assessed the effects of Oxycyte on cerebral vasoactivity in healthy, uninjured rats using intravital microscopy. The second experiment investigated the effect of Oxycyte on cerebral Pbt O2 using the PQM in TBI model. Animals in the Oxycyte group received a single injection of Oxycyte (6 mL/kg) shortly after TBI, while NON animals received no treatment. RESULTS: Oxycyte did not cause vasoconstriction in small- (<50 µm) or medium- (50-100 µm) sized pial arterioles nor did it cause a significant change in blood pressure. Treatment with Oxycyte while breathing 100% O2 did not improve Pbt O2 . However, in rats ventilated with ~40% O2 , Pbt O2 improved to near pre-TBI values within 105 minutes after Oxycyte injection. CONCLUSIONS: Although Oxycyte did not cause cerebral vasoconstriction, its use at the dose tested while breathing 100% O2 did not improve Pbt O2 following TBI. However, Oxycyte treatment while breathing a lower enriched oxygen concentration may improve Pbt O2 after TBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Fluorocarbonos/uso terapêutico , Oxigênio/sangue , Animais , Arteríolas/fisiologia , Encéfalo/metabolismo , Circulação Cerebrovascular , Microscopia Intravital , Oxigênio/administração & dosagem , Ratos , Vasoconstrição/efeitos dos fármacos
19.
PLoS Pathog ; 12(11): e1005999, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27812214

RESUMO

Parasite-specific antibodies protect against blood-stage Plasmodium infection. However, in malaria-endemic regions, it takes many months for naturally-exposed individuals to develop robust humoral immunity. Explanations for this have focused on antigenic variation by Plasmodium, but have considered less whether host production of parasite-specific antibody is sub-optimal. In particular, it is unclear whether host immune factors might limit antibody responses. Here, we explored the effect of Type I Interferon signalling via IFNAR1 on CD4+ T-cell and B-cell responses in two non-lethal murine models of malaria, P. chabaudi chabaudi AS (PcAS) and P. yoelii 17XNL (Py17XNL) infection. Firstly, we demonstrated that CD4+ T-cells and ICOS-signalling were crucial for generating germinal centre (GC) B-cells, plasmablasts and parasite-specific antibodies, and likewise that T follicular helper (Tfh) cell responses relied on B cells. Next, we found that IFNAR1-signalling impeded the resolution of non-lethal blood-stage infection, which was associated with impaired production of parasite-specific IgM and several IgG sub-classes. Consistent with this, GC B-cell formation, Ig-class switching, plasmablast and Tfh differentiation were all impaired by IFNAR1-signalling. IFNAR1-signalling proceeded via conventional dendritic cells, and acted early by limiting activation, proliferation and ICOS expression by CD4+ T-cells, by restricting the localization of activated CD4+ T-cells adjacent to and within B-cell areas of the spleen, and by simultaneously suppressing Th1 and Tfh responses. Finally, IFNAR1-deficiency accelerated humoral immune responses and parasite control by boosting ICOS-signalling. Thus, we provide evidence of a host innate cytokine response that impedes the onset of humoral immunity during experimental malaria.


Assuntos
Anticorpos Antiprotozoários/imunologia , Imunidade Humoral/imunologia , Proteína Coestimuladora de Linfócitos T Induzíveis/imunologia , Malária/imunologia , Receptor de Interferon alfa e beta/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Plasmodium chabaudi/imunologia , Plasmodium yoelii/imunologia , Transdução de Sinais/imunologia
20.
PLoS Pathog ; 12(1): e1005398, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26765224

RESUMO

Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.


Assuntos
Inflamação/imunologia , Interleucina-10/biossíntese , Leishmaniose Visceral/imunologia , Proteínas Repressoras/imunologia , Células Th1/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Humanos , Inflamação/patologia , Interleucina-10/imunologia , Leishmaniose Visceral/patologia , Malária/imunologia , Malária/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia de Fluorescência , Fator 1 de Ligação ao Domínio I Regulador Positivo , Linfócitos T Reguladores/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa