Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(12): 6994-7011, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38828775

RESUMO

The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.


Assuntos
Proteína BRCA1 , DNA Polimerase II , Replicação do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase II/genética , Replicação do DNA/efeitos dos fármacos , Dano ao DNA , Linhagem Celular Tumoral , Recombinação Homóloga/genética , Recombinação Homóloga/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética
2.
Biol Proced Online ; 25(1): 33, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097939

RESUMO

BACKGROUND: The action of mesenchymal stem cells (MSCs) is the subject of intense research in the field of regenerative medicine, including their potential use in companion animals, such as dogs. To ensure the safety of canine MSC batches for their application in regenerative medicine, a quality control test must be conducted in accordance with Good Manufacturing Practices (GMP). Based on guidance provided by the European Medicines Agency, this study aimed to develop and validate a highly sensitive and robust, nucleic acid-based test panel for the detection of various canine pathogens. Analytical sensitivity, specificity, amplification efficiency, and linearity were evaluated to ensure robust assessment. Additionally, viable spike-in controls were used to control for optimal nucleic acid extraction. The conventional PCR-based and real-time PCR-based pathogen assays were evaluated in a real-life setting, by direct testing MSC batches. RESULTS: The established nucleic acid-based assays displayed remarkable sensitivity, detecting 100-1 copies/reaction of template DNA. They also exhibited high specificity and efficiency. Moreover, highly effective nucleic acid isolation was confirmed by the sensitive detection of spike-in controls. The detection capacity of our optimized and validated methods was determined by direct pathogen testing of nine MSC batches that displayed unusual phenotypes, such as reduced cell division or other deviating characteristics. Among these MCS batches of uncertain purity, only one tested negative for all pathogens. The direct testing of these samples yielded positive results for important canine pathogens, including tick-borne disease-associated species and viral members of the canine infectious respiratory disease complex (CIRDC). Notably, samples positive for the etiological agents responsible for enteritis (CPV), leptospirosis (Leptospira interrogans), and neosporosis (Neospora caninum) were also identified. Furthermore, we conducted biosafety evaluation of 12 MSC batches intended for therapeutic application. Eleven MSC batches were found to be free of extraneous agents, and only one tested positive for a specific pathogen, namely, canine parvovirus. CONCLUSION: In this study, we established and validated reliable, highly sensitive, and accurate nucleic acid-based testing methods for a broad spectrum of canine pathogens.

3.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887294

RESUMO

The rapid integration of genomic technologies in clinical diagnostics has resulted in the detection of a multitude of missense variants whose clinical significance is often unknown. As a result, a plethora of computational tools have been developed to facilitate variant interpretation. However, choosing an appropriate software from such a broad range of tools can be challenging; therefore, systematic benchmarking with high-quality, independent datasets is critical. Using three independent benchmarking datasets compiled from the ClinVar database, we evaluated the performance of ten widely used prediction algorithms with missense variants from 21 clinically relevant genes, including BRCA1 and BRCA2. A fourth dataset consisting of 1053 missense variants was also used to investigate the impact of type 1 circularity on their performance. The performance of the prediction algorithms varied widely across datasets. Based on Matthews Correlation Coefficient and Area Under the Curve, SNPs&GO and PMut consistently displayed an overall above-average performance across the datasets. Most of the tools demonstrated greater sensitivity and negative predictive values at the expense of lower specificity and positive predictive values. We also demonstrated that type 1 circularity significantly impacts the performance of these tools and, if not accounted for, may confound the selection of the best performing algorithms.


Assuntos
Algoritmos , Biologia Computacional , Biologia Computacional/métodos , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Software
4.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445206

RESUMO

UV-induced DNA damage response and repair are extensively studied processes, as any malfunction in these pathways contributes to the activation of tumorigenesis. Although several proteins involved in these cellular mechanisms have been described, the entire repair cascade has remained unexplored. To identify new players in UV-induced repair, we performed a microarray screen, in which we found SerpinB10 (SPB10, Bomapin) as one of the most dramatically upregulated genes following UV irradiation. Here, we demonstrated that an increased mRNA level of SPB10 is a general cellular response following UV irradiation regardless of the cell type. We showed that although SPB10 is implicated in the UV-induced cellular response, it has no indispensable function in cell survival upon UV irradiation. Nonetheless, we revealed that SPB10 might be involved in delaying the duration of DNA repair in interphase and also in S-phase cells. Additionally, we also highlighted the interaction between SPB10 and H3. Based on our results, it seems that SPB10 protein is implicated in UV-induced stress as a "quality control protein", presumably by slowing down the repair process.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos da radiação , Fase S/efeitos da radiação , Serpinas/metabolismo , Raios Ultravioleta/efeitos adversos , Linhagem Celular Tumoral , Humanos , Serpinas/genética
5.
Proteomics ; 20(3-4): e1900184, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31999075

RESUMO

It is established that short inverted repeats trigger base substitution mutagenesis in human cells. However, how the replication machinery deals with structured DNA is unknown. It has been previously reported that in human cell-free extracts, DNA primer extension using a structured single-stranded template is transiently blocked at DNA hairpins. Here, the proteomic analysis of proteins bound to the DNA template is reported and evidence that the DNA-PK complex (DNA-PKcs and the Ku heterodimer) recognizes, and is activated by, structured single-stranded DNA is provided. Hijacking the DNA-PK complex by double-stranded oligonucleotides results in a large removal of the pausing sites and an elevated DNA extension efficiency. Conversely, DNA-PKcs inhibition results in its stabilization on the template, along with other proteins acting downstream in the Non-Homologous End-Joining (NHEJ) pathway, especially the XRCC4-DNA ligase 4 complex and the cofactor PAXX. Retention of NHEJ factors to the DNA in the absence of DNA-PKcs activity correlates with additional halts of primer extension, suggesting that these proteins hinder the progression of the DNA synthesis at these sites. Overall these results raise the possibility that, upon binding to hairpins formed onto ssDNA during fork progression, the DNA-PK complex interferes with replication fork dynamics in vivo.


Assuntos
Reparo do DNA por Junção de Extremidades , Replicação do DNA , DNA/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Extratos Celulares , DNA/química , DNA/genética , DNA Ligase Dependente de ATP/metabolismo , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica
6.
Mol Cell ; 47(3): 396-409, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22704558

RESUMO

Completion of DNA replication after replication stress depends on PCNA, which undergoes monoubiquitination to stimulate direct bypass of DNA lesions by specialized DNA polymerases or is polyubiquitinated to promote recombination-dependent DNA synthesis across DNA lesions by template switching mechanisms. Here we report that the ZRANB3 translocase, a SNF2 family member related to the SIOD disorder SMARCAL1 protein, is recruited by polyubiquitinated PCNA to promote fork restart following replication arrest. ZRANB3 depletion in mammalian cells results in an increased frequency of sister chromatid exchange and DNA damage sensitivity after treatment with agents that cause replication stress. Using in vitro biochemical assays, we show that recombinant ZRANB3 remodels DNA structures mimicking stalled replication forks and disassembles recombination intermediates. We therefore propose that ZRANB3 maintains genomic stability at stalled or collapsed replication forks by facilitating fork restart and limiting inappropriate recombination that could occur during template switching events.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA/fisiologia , Instabilidade Genômica/fisiologia , Poliubiquitina/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estresse Fisiológico/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Dano ao DNA/fisiologia , DNA Helicases/genética , Proteínas de Fluorescência Verde/genética , Humanos , Dados de Sequência Molecular , Osteossarcoma , Ligação Proteica/fisiologia , Recombinação Genética/fisiologia , Troca de Cromátide Irmã/fisiologia , Ubiquitinação/fisiologia
7.
Nucleic Acids Res ; 45(6): 3172-3188, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28053116

RESUMO

Mutations in SPARTAN are associated with early onset hepatocellular carcinoma and progeroid features. A regulatory function of Spartan has been implicated in DNA damage tolerance pathways such as translesion synthesis, but the exact function of the protein remained unclear. Here, we reveal the role of human Spartan in facilitating replication of DNA-protein crosslink-containing DNA. We found that purified Spartan has a DNA-dependent protease activity degrading certain proteins bound to DNA. In concert, Spartan is required for direct DPC removal in vivo; we also show that the protease Spartan facilitates repair of formaldehyde-induced DNA-protein crosslinks in later phases of replication using the bromodeoxyuridin (BrdU) comet assay. Moreover, DNA fibre assay indicates that formaldehyde-induced replication stress dramatically decreases the speed of replication fork movement in Spartan-deficient cells, which accumulate in the G2/M cell cycle phase. Finally, epistasis analysis mapped these Spartan functions to the RAD6-RAD18 DNA damage tolerance pathway. Our results reveal that Spartan facilitates replication of DNA-protein crosslink-containing DNA enzymatically, as a protease, which may explain its role in preventing carcinogenesis and aging.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Peptídeo Hidrolases/metabolismo , Proteínas de Ligação a DNA/química , Formaldeído/toxicidade , Células HEK293 , Humanos , Domínios Proteicos , Proteínas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Nucleic Acids Res ; 44(7): 3176-89, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792895

RESUMO

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Reparo de DNA por Recombinação , Motivos de Aminoácidos , DNA/biossíntese , DNA Polimerase III/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases/fisiologia , Raios Ultravioleta
9.
EMBO J ; 32(5): 742-55, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23395907

RESUMO

Completion of DNA replication needs to be ensured even when challenged with fork progression problems or DNA damage. PCNA and its modifications constitute a molecular switch to control distinct repair pathways. In yeast, SUMOylated PCNA (S-PCNA) recruits Srs2 to sites of replication where Srs2 can disrupt Rad51 filaments and prevent homologous recombination (HR). We report here an unexpected additional mechanism by which S-PCNA and Srs2 block the synthesis-dependent extension of a recombination intermediate, thus limiting its potentially hazardous resolution in association with a cross-over. This new Srs2 activity requires the SUMO interaction motif at its C-terminus, but neither its translocase activity nor its interaction with Rad51. Srs2 binding to S-PCNA dissociates Polδ and Polη from the repair synthesis machinery, thus revealing a novel regulatory mechanism controlling spontaneous genome rearrangements. Our results suggest that cycling cells use the Siz1-dependent SUMOylation of PCNA to limit the extension of repair synthesis during template switch or HR and attenuate reciprocal DNA strand exchanges to maintain genome stability.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA/genética , Recombinação Homóloga , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , DNA Helicases/genética , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Reparo do DNA/efeitos da radiação , Replicação do DNA/genética , Replicação do DNA/efeitos da radiação , Instabilidade Genômica , Mutação/genética , Antígeno Nuclear de Célula em Proliferação/genética , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína SUMO-1/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Sumoilação , Raios Ultravioleta/efeitos adversos
10.
PLoS Biol ; 12(1): e1001771, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24465179

RESUMO

DNA damages hinder the advance of replication forks because of the inability of the replicative polymerases to synthesize across most DNA lesions. Because stalled replication forks are prone to undergo DNA breakage and recombination that can lead to chromosomal rearrangements and cell death, cells possess different mechanisms to ensure the continuity of replication on damaged templates. Specialized, translesion synthesis (TLS) polymerases can take over synthesis at DNA damage sites. TLS polymerases synthesize DNA with a high error rate and are responsible for damage-induced mutagenesis, so their activity must be strictly regulated. However, the mechanism that allows their replacement of the replicative polymerase is unknown. Here, using protein complex purification and yeast genetic tools, we identify Def1 as a key factor for damage-induced mutagenesis in yeast. In in vivo experiments we demonstrate that upon DNA damage, Def1 promotes the ubiquitylation and subsequent proteasomal degradation of Pol3, the catalytic subunit of the replicative polymerase δ, whereas Pol31 and Pol32, the other two subunits of polymerase δ, are not affected. We also show that purified Pol31 and Pol32 can form a complex with the TLS polymerase Rev1. Our results imply that TLS polymerases carry out DNA lesion bypass only after the Def1-assisted removal of Pol3 from the stalled replication fork.


Assuntos
Proteínas Cromossômicas não Histona/genética , DNA Polimerase III/genética , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Nucleotidiltransferases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas Cromossômicas não Histona/metabolismo , Dano ao DNA , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Mutagênese , Nucleotidiltransferases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Proteólise , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitinação
11.
Nucleic Acids Res ; 43(21): 10277-91, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26350214

RESUMO

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Nucleic Acids Res ; 43(4): 2116-25, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25662213

RESUMO

Switching between replicative and translesion synthesis (TLS) DNA polymerases are crucial events for the completion of genomic DNA synthesis when the replication machinery encounters lesions in the DNA template. In eukaryotes, the translesional DNA polymerase η (Polη) plays a central role for accurate bypass of cyclobutane pyrimidine dimers, the predominant DNA lesions induced by ultraviolet irradiation. Polη deficiency is responsible for a variant form of the Xeroderma pigmentosum (XPV) syndrome, characterized by a predisposition to skin cancer. Here, we show that the FF483-484 amino acids in the human Polη (designated F1 motif) are necessary for the interaction of this TLS polymerase with POLD2, the B subunit of the replicative DNA polymerase δ, both in vitro and in vivo. Mutating this motif impairs Polη function in the bypass of both an N-2-acetylaminofluorene adduct and a TT-CPD lesion in cellular extracts. By complementing XPV cells with different forms of Polη, we show that the F1 motif contributes to the progression of DNA synthesis and to the cell survival after UV irradiation. We propose that the integrity of the F1 motif of Polη, necessary for the Polη/POLD2 interaction, is required for the establishment of an efficient TLS complex.


Assuntos
Dano ao DNA , DNA Polimerase III/metabolismo , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/metabolismo , Ciclo Celular , Linhagem Celular , Sobrevivência Celular , Humanos , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/metabolismo , Raios Ultravioleta
13.
Nucleic Acids Res ; 42(3): 1711-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24198246

RESUMO

Stalling of replication forks at unrepaired DNA lesions can result in discontinuities opposite the damage in the newly synthesized DNA strand. Translesion synthesis or facilitating the copy from the newly synthesized strand of the sister duplex by template switching can overcome such discontinuities. During template switch, a new primer-template junction has to be formed and two mechanisms, including replication fork reversal and D-loop formation have been suggested. Genetic evidence indicates a major role for yeast Rad5 in template switch and that both Rad5 and its human orthologue, Helicase-like transcription factor (HLTF), a potential tumour suppressor can facilitate replication fork reversal. This study demonstrates the ability of HLTF and Rad5 to form a D-loop without requiring ATP binding and/or hydrolysis. We also show that this strand-pairing activity is independent of RAD51 in vitro and is not mechanistically related to that of another member of the SWI/SNF family, RAD54. In addition, the 3'-end of the invading strand in the D-loop can serve as a primer and is extended by DNA polymerase. Our data indicate that HLTF is involved in a RAD51-independent D-loop branch of template switch pathway that can promote repair of gaps formed during replication of damaged DNA.


Assuntos
Dano ao DNA , Replicação do DNA , Fatores de Transcrição Forkhead/metabolismo , Adenosina Trifosfatases/metabolismo , DNA/química , DNA/metabolismo , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Humanos , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
14.
Nucleic Acids Res ; 40(21): 10795-808, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22987070

RESUMO

Unrepaired DNA damage may arrest ongoing replication forks, potentially resulting in fork collapse, increased mutagenesis and genomic instability. Replication through DNA lesions depends on mono- and polyubiquitylation of proliferating cell nuclear antigen (PCNA), which enable translesion synthesis (TLS) and template switching, respectively. A proper replication fork rescue is ensured by the dynamic ubiquitylation and deubiquitylation of PCNA; however, as yet, little is known about its regulation. Here, we show that human Spartan/C1orf124 protein provides a higher cellular level of ubiquitylated-PCNA by which it regulates the choice of DNA damage tolerance pathways. We find that Spartan is recruited to sites of replication stress, a process that depends on its PCNA- and ubiquitin-interacting domains and the RAD18 PCNA ubiquitin ligase. Preferential association of Spartan with ubiquitin-modified PCNA protects against PCNA deubiquitylation by ubiquitin-specific protease 1 and facilitates the access of a TLS polymerase to the replication fork. In concert, depletion of Spartan leads to increased sensitivity to DNA damaging agents and causes elevated levels of sister chromatid exchanges. We propose that Spartan promotes genomic stability by regulating the choice of rescue of stalled replication fork, whose mechanism includes its interaction with ubiquitin-conjugated PCNA and protection against PCNA deubiquitylation.


Assuntos
Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina/metabolismo , Proteínas de Arabidopsis , Linhagem Celular , Replicação do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/metabolismo , Endopeptidases/metabolismo , Humanos , Estrutura Terciária de Proteína , Troca de Cromátide Irmã , Ubiquitina-Proteína Ligases/fisiologia , Proteases Específicas de Ubiquitina
15.
Nucleic Acids Res ; 40(13): 6049-59, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22457066

RESUMO

DNA double-strand breaks (DSBs) can be generated not only by reactive agents but also as a result of replication fork collapse at unrepaired DNA lesions. Whereas ubiquitylation of proliferating cell nuclear antigen (PCNA) facilitates damage bypass, modification of yeast PCNA by small ubiquitin-like modifier (SUMO) controls recombination by providing access for the Srs2 helicase to disrupt Rad51 nucleoprotein filaments. However, in human cells, the roles of PCNA SUMOylation have not been explored. Here, we characterize the modification of human PCNA by SUMO in vivo as well as in vitro. We establish that human PCNA can be SUMOylated at multiple sites including its highly conserved K164 residue and that SUMO modification is facilitated by replication factor C (RFC). We also show that expression of SUMOylation site PCNA mutants leads to increased DSB formation in the Rad18(-/-) cell line where the effect of Rad18-dependent K164 PCNA ubiquitylation can be ruled out. Moreover, expression of PCNA-SUMO1 fusion prevents DSB formation as well as inhibits recombination if replication stalls at DNA lesions. These findings suggest the importance of SUMO modification of human PCNA in preventing replication fork collapse to DSB and providing genome stability.


Assuntos
Quebras de DNA de Cadeia Dupla , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sumoilação , Replicação do DNA , Histonas/metabolismo , Recombinação Homóloga , Humanos , Mutação , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Proteína SUMO-1/metabolismo
16.
Proc Natl Acad Sci U S A ; 108(34): 14073-8, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21795603

RESUMO

Human helicase-like transcription factor (HLTF) exhibits ubiquitin ligase activity for proliferating cell nuclear antigen (PCNA) polyubiquitylation as well as double-stranded DNA translocase activity for remodeling stalled replication fork by fork reversal, which can support damage bypass by template switching. However, a stalled replication fork is surrounded by various DNA-binding proteins which can inhibit the access of damage bypass players, and it is unknown how these proteins become displaced. Here we reveal that HLTF has an ATP hydrolysis-dependent protein remodeling activity, by which it can remove proteins bound to the replication fork. Moreover, we demonstrate that HLTF can displace a broad spectrum of proteins such as replication protein A (RPA), PCNA, and replication factor C (RFC), thereby providing the first example for a protein clearing activity at the stalled replication fork. Our findings clarify how remodeling of a stalled replication fork can occur if it is engaged in interactions with masses of proteins.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Humanos , Modelos Biológicos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína de Replicação A/metabolismo , Proteína de Replicação C/metabolismo
17.
J Biotechnol ; 380: 1-19, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072328

RESUMO

DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.


Assuntos
Replicação do DNA , Proteínas de Saccharomyces cerevisiae , Animais , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Dano ao DNA , DNA/genética , Saccharomyces cerevisiae/metabolismo , Reparo do DNA , Mamíferos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Saccharomyces cerevisiae/genética
18.
Eur Biophys J ; 42(2-3): 147-58, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23160754

RESUMO

The rate of rotation of the rotor in the yeast vacuolar proton-ATPase (V-ATPase), relative to the stator or steady parts of the enzyme, is estimated in native vacuolar membrane vesicles from Saccharomyces cerevisiae under standardised conditions. Membrane vesicles are formed spontaneously after exposing purified yeast vacuoles to osmotic shock. The fraction of total ATPase activity originating from the V-ATPase is determined by using the potent and specific inhibitor of the enzyme, concanamycin A. Inorganic phosphate liberated from ATP in the vacuolar membrane vesicle system, during ten min of ATPase activity at 20 °C, is assayed spectrophotometrically for different concanamycin A concentrations. A fit of the quadratic binding equation, assuming a single concanamycin A binding site on a monomeric V-ATPase (our data are incompatible with models assuming multiple binding sites), to the inhibitor titration curve determines the concentration of the enzyme. Combining this with the known ATP/rotation stoichiometry of the V-ATPase and the assayed concentration of inorganic phosphate liberated by the V-ATPase, leads to an average rate of ~10 Hz for full 360° rotation (and a range of 6-32 Hz, considering the ± standard deviation of the enzyme concentration), which, from the time-dependence of the activity, extrapolates to ~14 Hz (8-48 Hz) at the beginning of the reaction. These are lower-limit estimates. To our knowledge, this is the first report of the rotation rate in a V-ATPase that is not subjected to genetic or chemical modification and is not fixed to a solid support; instead it is functioning in its native membrane environment.


Assuntos
Membranas Intracelulares/enzimologia , Rotação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Vacúolos/enzimologia , Biocatálise , Macrolídeos/farmacologia , Modelos Moleculares , Fosfatos/metabolismo , Estrutura Terciária de Proteína , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores
19.
Int J Hyperthermia ; 29(5): 491-9, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23841917

RESUMO

Hyperthermia is a promising treatment modality for cancer in combination both with radio- and chemotherapy. In spite of its great therapeutic potential, the underlying molecular mechanisms still remain to be clarified. Due to lipid imbalances and 'membrane defects' most of the tumour cells possess elevated membrane fluidity. However, further increasing membrane fluidity to sensitise to chemo- or radiotherapy could have some other effects. In fact, hyperfluidisation of cell membrane induced by membrane fluidiser initiates a stress response as the heat shock protein response, which may modulate positively or negatively apoptotic cell death. Overviewing some recent findings based on a technology allowing direct imaging of lipid rafts in live cells and lipidomics, novel aspects of the intimate relationship between the 'membrane stress' of tumour cells and the cellular heat shock response will be highlighted. Our findings lend support to both the importance of membrane remodelling and the release of lipid signals initiating stress protein response, which can operate in tandem to control the extent of the ultimate cellular thermosensitivity. Overall, we suggest that the fluidity variable of membranes should be used as an independent factor for predicting the efficacy of combinational cancer therapies.


Assuntos
Hipertermia Induzida , Fluidez de Membrana , Neoplasias/terapia , Animais , Membrana Celular/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Metabolismo dos Lipídeos , Neoplasias/metabolismo
20.
Mol Ther Methods Clin Dev ; 29: 145-159, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37025950

RESUMO

DNA transposon-based gene delivery vectors represent a promising new branch of randomly integrating vector development for gene therapy. For the side-by-side evaluation of the piggyBac and Sleeping Beauty systems-the only DNA transposons currently employed in clinical trials-during therapeutic intervention, we treated the mouse model of tyrosinemia type I with liver-targeted gene delivery using both transposon vectors. For genome-wide mapping of transposon insertion sites we developed a new next-generation sequencing procedure called streptavidin-based enrichment sequencing, which allowed us to identify approximately one million integration sites for both systems. We revealed that a high proportion of piggyBac integrations are clustered in hot regions and found that they are frequently recurring at the same genomic positions among treated animals, indicating that the genome-wide distribution of Sleeping Beauty-generated integrations is closer to random. We also revealed that the piggyBac transposase protein exhibits prolonged activity, which predicts the risk of oncogenesis by generating chromosomal double-strand breaks. Safety concerns associated with prolonged transpositional activity draw attention to the importance of squeezing the active state of the transposase enzymes into a narrower time window.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa