Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 84(19): 3565-3566, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39366341

RESUMO

This issue of Molecular Cell explores the many faces of RNA, diving into the fundamental processes mediating the life cycle of RNA, the regulatory roles of RNA in cellular processes, the importance of RNA in disease, and the technologies used to study RNA.


Assuntos
RNA , RNA/genética , RNA/metabolismo , Humanos , Animais
2.
Mol Cell ; 81(24): 5052-5065.e6, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34847358

RESUMO

Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen triggers an unfolded protein response (UPR) for stress adaptation, the failure of which induces cell apoptosis and tissue/organ damage. The molecular switches underlying how the UPR selects for stress adaptation over apoptosis remain unknown. Here, we discovered that accumulation of unfolded/misfolded proteins selectively induces N6-adenosine-methyltransferase-14 (METTL14) expression. METTL14 promotes C/EBP-homologous protein (CHOP) mRNA decay through its 3' UTR N6-methyladenosine (m6A) to inhibit its downstream pro-apoptotic target gene expression. UPR induces METTL14 expression by competing against the HRD1-ER-associated degradation (ERAD) machinery to block METTL14 ubiquitination and degradation. Therefore, mice with liver-specific METTL14 deletion are highly susceptible to both acute pharmacological and alpha-1 antitrypsin (AAT) deficiency-induced ER proteotoxic stress and liver injury. Further hepatic CHOP deletion protects METTL14 knockout mice from ER-stress-induced liver damage. Our study reveals a crosstalk between ER stress and mRNA m6A modification pathways, termed the ERm6A pathway, for ER stress adaptation to proteotoxicity.


Assuntos
Adenina/análogos & derivados , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/enzimologia , Hepatopatias/enzimologia , Fígado/enzimologia , Metiltransferases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenina/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/patologia , Células HEK293 , Células Hep G2 , Humanos , Fígado/patologia , Hepatopatias/etiologia , Hepatopatias/genética , Hepatopatias/patologia , Metiltransferases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células NIH 3T3 , Proteólise , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/enzimologia , Deficiência de alfa 1-Antitripsina/genética
3.
Mol Cell ; 80(4): 633-647.e7, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33217317

RESUMO

N6-methyladenosine (m6A) is the most abundant mRNA modification and is installed by the METTL3-METTL14-WTAP methyltransferase complex. Although the importance of m6A methylation in mRNA metabolism has been well documented recently, regulation of the m6A machinery remains obscure. Through a genome-wide CRISPR screen, we identify the ERK pathway and USP5 as positive regulators of the m6A deposition. We find that ERK phosphorylates METTL3 at S43/S50/S525 and WTAP at S306/S341, followed by deubiquitination by USP5, resulting in stabilization of the m6A methyltransferase complex. Lack of METTL3/WTAP phosphorylation reduces decay of m6A-labeled pluripotent factor transcripts and traps mouse embryonic stem cells in the pluripotent state. The same phosphorylation can also be found in ERK-activated human cancer cells and contribute to tumorigenesis. Our study reveals an unrecognized function of ERK in regulating m6A methylation.


Assuntos
Adenina/análogos & derivados , Carcinogênese/patologia , Endopeptidases/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Melanoma/patologia , Metiltransferases/química , Adenina/química , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Endopeptidases/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Metiltransferases/fisiologia , Camundongos , Camundongos Knockout , Fosforilação , Estabilidade Proteica , Processamento Pós-Transcricional do RNA
4.
EMBO J ; 40(8): e106276, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33729590

RESUMO

Dynamic chemical modifications of RNA represent novel and fundamental mechanisms that regulate stemness and tissue homeostasis. Rejuvenation and wound repair of mammalian skin are sustained by epidermal progenitor cells, which are localized within the basal layer of the skin epidermis. N6 -methyladenosine (m6 A) is one of the most abundant modifications found in eukaryotic mRNA and lncRNA (long noncoding RNA). In this report, we survey changes of m6 A RNA methylomes upon epidermal differentiation and identify Pvt1, a lncRNA whose m6 A modification is critically involved in sustaining stemness of epidermal progenitor cells. With genome-editing and a mouse genetics approach, we show that ablation of m6 A methyltransferase or Pvt1 impairs the self-renewal and wound healing capability of skin. Mechanistically, methylation of Pvt1 transcripts enhances its interaction with MYC and stabilizes the MYC protein in epidermal progenitor cells. Our study presents a global view of epitranscriptomic dynamics that occur during epidermal differentiation and identifies the m6 A modification of Pvt1 as a key signaling event involved in skin tissue homeostasis and wound repair.


Assuntos
Adenosina/análogos & derivados , Diferenciação Celular , Células Epidérmicas/citologia , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , Células-Tronco/citologia , Adenosina/metabolismo , Animais , Células Cultivadas , Células Epidérmicas/metabolismo , Células Epidérmicas/fisiologia , Cobaias , Metiltransferases/genética , Camundongos , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Longo não Codificante/genética , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Cicatrização
5.
EMBO J ; 40(5): e106309, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33459381

RESUMO

The N6-methyladenosine (m6 A) RNA modification serves crucial functions in RNA metabolism; however, the molecular mechanisms underlying the regulation of m6 A are not well understood. Here, we establish arginine methylation of METTL14, a component of the m6 A methyltransferase complex, as a novel pathway that controls m6 A deposition in mammalian cells. Specifically, protein arginine methyltransferase 1 (PRMT1) interacts with, and methylates the intrinsically disordered C terminus of METTL14, which promotes its interaction with RNA substrates, enhances its RNA methylation activity, and is crucial for its interaction with RNA polymerase II (RNAPII). Mouse embryonic stem cells (mESCs) expressing arginine methylation-deficient METTL14 exhibit significantly reduced global m6 A levels. Transcriptome-wide m6 A analysis identified 1,701 METTL14 arginine methylation-dependent m6 A sites located in 1,290 genes involved in various cellular processes, including stem cell maintenance and DNA repair. These arginine methylation-dependent m6 A sites are associated with enhanced translation of genes essential for the repair of DNA interstrand crosslinks; thus, METTL14 arginine methylation-deficient mESCs are hypersensitive to DNA crosslinking agents. Collectively, these findings reveal important aspects of m6 A regulation and new functions of arginine methylation in RNA metabolism.


Assuntos
Adenosina/análogos & derivados , Arginina/química , Metiltransferases/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Processamento de Proteína Pós-Traducional , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Polimerase II/metabolismo , Adenosina/química , Animais , Citoplasma , Metiltransferases/química , Metiltransferases/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína-Arginina N-Metiltransferases/genética , RNA Polimerase II/genética , Transcriptoma
6.
Nature ; 512(7513): 213-7, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25043036

RESUMO

Imitation switch (ISWI)-family remodelling enzymes regulate access to genomic DNA by mobilizing nucleosomes. These ATP-dependent chromatin remodellers promote heterochromatin formation and transcriptional silencing by generating regularly spaced nucleosome arrays. The nucleosome-spacing activity arises from the dependence of nucleosome translocation on the length of extranucleosomal linker DNA, but the underlying mechanism remains unclear. Here we study nucleosome remodelling by human ATP-dependent chromatin assembly and remodelling factor (ACF), an ISWI enzyme comprising a catalytic subunit, Snf2h, and an accessory subunit, Acf1 (refs 2, 11 - 13). We find that ACF senses linker DNA length through an interplay between its accessory and catalytic subunits mediated by the histone H4 tail of the nucleosome. Mutation of AutoN, an auto-inhibitory domain within Snf2h that bears sequence homology to the H4 tail, abolishes the linker-length sensitivity in remodelling. Addition of exogenous H4-tail peptide or deletion of the nucleosomal H4 tail also diminishes the linker-length sensitivity. Moreover, Acf1 binds both the H4-tail peptide and DNA in an amino (N)-terminal domain dependent manner, and in the ACF-bound nucleosome, lengthening the linker DNA reduces the Acf1-H4 tail proximity. Deletion of the N-terminal portion of Acf1 (or its homologue in yeast) abolishes linker-length sensitivity in remodelling and leads to severe growth defects in vivo. Taken together, our results suggest a mechanism for nucleosome spacing where linker DNA sensing by Acf1 is allosterically transmitted to Snf2h through the H4 tail of the nucleosome. For nucleosomes with short linker DNA, Acf1 preferentially binds to the H4 tail, allowing AutoN to inhibit the ATPase activity of Snf2h. As the linker DNA lengthens, Acf1 shifts its binding preference to the linker DNA, freeing the H4 tail to compete AutoN off the ATPase and thereby activating ACF.


Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Animais , Cromatina/metabolismo , Proteínas Cromossômicas não Histona , DNA/metabolismo , Histonas/genética , Humanos , Mutação , Estrutura Terciária de Proteína/genética , Saccharomyces cerevisiae/metabolismo , Células Sf9 , Spodoptera , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Science ; 379(6633): 677-682, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36705538

RESUMO

N6-methyladenosine (m6A) is the most abundant messenger RNA (mRNA) modification and plays crucial roles in diverse physiological processes. Using a massively parallel assay for m6A (MPm6A), we discover that m6A specificity is globally regulated by suppressors that prevent m6A deposition in unmethylated transcriptome regions. We identify exon junction complexes (EJCs) as m6A suppressors that protect exon junction-proximal RNA within coding sequences from methylation and regulate mRNA stability through m6A suppression. EJC suppression of m6A underlies multiple global characteristics of mRNA m6A specificity, with the local range of EJC protection sufficient to suppress m6A deposition in average-length internal exons but not in long internal and terminal exons. EJC-suppressed methylation sites colocalize with EJC-suppressed splice sites, which suggests that exon architecture broadly determines local mRNA accessibility to regulatory complexes.


Assuntos
Éxons , Regulação da Expressão Gênica , Splicing de RNA , RNA Mensageiro , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Humanos , Animais
8.
Nat Biotechnol ; 41(3): 344-354, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36302989

RESUMO

Functional characterization of pseudouridine (Ψ) in mammalian mRNA has been hampered by the lack of a quantitative method that maps Ψ in the whole transcriptome. We report bisulfite-induced deletion sequencing (BID-seq), which uses a bisulfite-mediated reaction to convert pseudouridine stoichiometrically into deletion upon reverse transcription without cytosine deamination. BID-seq enables detection of abundant Ψ sites with stoichiometry information in several human cell lines and 12 different mouse tissues using 10-20 ng input RNA. We uncover consensus sequences for Ψ in mammalian mRNA and assign different 'writer' proteins to individual Ψ deposition. Our results reveal a transcript stabilization role of Ψ sites installed by TRUB1 in human cancer cells. We also detect the presence of Ψ within stop codons of mammalian mRNA and confirm the role of Ψ in promoting stop codon readthrough in vivo. BID-seq will enable future investigations of the roles of Ψ in diverse biological processes.


Assuntos
Pseudouridina , Processamento Pós-Transcricional do RNA , RNA Mensageiro , Animais , Humanos , Camundongos , Composição de Bases , Mamíferos/genética , Pseudouridina/genética , Pseudouridina/metabolismo , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Sulfitos
9.
Nat Biotechnol ; 40(8): 1210-1219, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35288668

RESUMO

Functional studies of the RNA N6-methyladenosine (m6A) modification have been limited by an inability to map individual m6A-modified sites in whole transcriptomes. To enable such studies, here, we introduce m6A-selective allyl chemical labeling and sequencing (m6A-SAC-seq), a method for quantitative, whole-transcriptome mapping of m6A at single-nucleotide resolution. The method requires only ~30 ng of poly(A) or rRNA-depleted RNA. We mapped m6A modification stoichiometries in RNA from cell lines and during in vitro monocytopoiesis from human hematopoietic stem and progenitor cells (HSPCs). We identified numerous cell-state-specific m6A sites whose methylation status was highly dynamic during cell differentiation. We observed changes of m6A stoichiometry as well as expression levels of transcripts encoding or regulated by key transcriptional factors (TFs) critical for HSPC differentiation. m6A-SAC-seq is a quantitative method to dissect the dynamics and functional roles of m6A sites in diverse biological processes using limited input RNA.


Assuntos
Processamento Pós-Transcricional do RNA , Transcriptoma , Animais , Humanos , Mamíferos/genética , Metilação , RNA/genética , RNA/metabolismo , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética , Transcriptoma/genética
10.
Nat Biotechnol ; 39(2): 225-235, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32839564

RESUMO

Determining the spatial organization of chromatin in cells mainly relies on crosslinking-based chromosome conformation capture techniques, but resolution and signal-to-noise ratio of these approaches is limited by interference from DNA-bound proteins. Here we introduce chemical-crosslinking assisted proximity capture (CAP-C), a method that uses multifunctional chemical crosslinkers with defined sizes to capture chromatin contacts. CAP-C generates chromatin contact maps at subkilobase (sub-kb) resolution with low background noise. We applied CAP-C to formaldehyde prefixed mouse embryonic stem cells (mESCs) and investigated loop domains (median size of 200 kb) and nonloop domains (median size of 9 kb). Transcription inhibition caused a greater loss of contacts in nonloop domains than loop domains. We uncovered conserved, transcription-state-dependent chromatin compartmentalization at high resolution that is shared from Drosophila to human, and a transcription-initiation-dependent nuclear subcompartment that brings multiple nonloop domains in close proximity. We also showed that CAP-C could be used to detect native chromatin conformation without formaldehyde prefixing.


Assuntos
Cromatina/metabolismo , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Transcrição Gênica , Animais , Fator de Ligação a CCCTC/metabolismo , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Genoma , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas/genética
11.
Nat Cell Biol ; 23(7): 684-691, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34253897

RESUMO

Members of the mammalian AlkB family are known to mediate nucleic acid demethylation1,2. ALKBH7, a mammalian AlkB homologue, localizes in mitochondria and affects metabolism3, but its function and mechanism of action are unknown. Here we report an approach to site-specifically detect N1-methyladenosine (m1A), N3-methylcytidine (m3C), N1-methylguanosine (m1G) and N2,N2-dimethylguanosine (m22G) modifications simultaneously within all cellular RNAs, and discovered that human ALKBH7 demethylates m22G and m1A within mitochondrial Ile and Leu1 pre-tRNA regions, respectively, in nascent polycistronic mitochondrial RNA4-6. We further show that ALKBH7 regulates the processing and structural dynamics of polycistronic mitochondrial RNAs. Depletion of ALKBH7 leads to increased polycistronic mitochondrial RNA processing, reduced steady-state mitochondria-encoded tRNA levels and protein translation, and notably decreased mitochondrial activity. Thus, we identify ALKBH7 as an RNA demethylase that controls nascent mitochondrial RNA processing and mitochondrial activity.


Assuntos
Enzimas AlkB/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mitocondrial/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Enzimas AlkB/genética , Citidina/análogos & derivados , Citidina/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , RNA Mitocondrial/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo
12.
Structure ; 16(3): 380-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18334213

RESUMO

The diacylglycerol kinase (DGK) enzymes function as regulators of intracellular signaling by altering the levels of the second messengers, diacylglycerol and phosphatidic acid. The DGK delta and eta isozymes possess a common protein-protein interaction module known as a sterile alpha-motif (SAM) domain. In DGK delta, SAM domain self-association inhibits the translocation of DGK delta to the plasma membrane. Here we show that DGK delta SAM forms a polymer and map the polymeric interface by a genetic selection for soluble mutants. A crystal structure reveals that DGKSAM forms helical polymers through a head-to-tail interaction similar to other SAM domain polymers. Disrupting polymerization by polymer interface mutations constitutively localizes DGK delta to the plasma membrane. Thus, polymerization of DGK delta regulates the activity of the enzyme by sequestering DGK delta in an inactive cellular location. Regulation by dynamic polymerization is an emerging theme in signal transduction.


Assuntos
Diacilglicerol Quinase/química , Diacilglicerol Quinase/metabolismo , Polímeros/metabolismo , Cristalografia por Raios X , Dimerização , Ativação Enzimática , Humanos , Modelos Biológicos , Modelos Moleculares , Peso Molecular , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Solubilidade , Distribuição Tecidual/fisiologia
13.
Trends Cell Biol ; 29(6): 487-499, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30940398

RESUMO

As the most abundant mRNA modification in eukaryotic cells, N6-methyladenosine (m6A) has recently emerged as an important regulator of gene expression. m6A modification can be deposited by m6A methyltransferases, removed by m6A demethylases, and recognized by different reader proteins. Numerous lines of evidence have shown that m6A methylation plays critical roles regulating gene expression in development and disease. In this review, we summarize the molecular and cellular function of m6A and highlight some key results which demonstrate the role of m6A in various cancers. Finally, we discuss future directions for research into m6A and its effects in cancer and the potential for targeting RNA modification in cancer treatment.


Assuntos
Adenosina/análogos & derivados , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Adenosina/metabolismo , Animais , Humanos
14.
Science ; 361(6409): 1346-1349, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30262497

RESUMO

RNA modifications have recently emerged as critical posttranscriptional regulators of gene expression programs. They affect diverse eukaryotic biological processes, and the correct deposition of many of these modifications is required for normal development. Messenger RNA (mRNA) modifications regulate various aspects of mRNA metabolism. For example, N 6-methyladenosine (m6A) affects the translation and stability of the modified transcripts, thus providing a mechanism to coordinate the regulation of groups of transcripts during cell state maintenance and transition. Similarly, some modifications in transfer RNAs are essential for RNA structure and function. Others are deposited in response to external cues and adapt global protein synthesis and gene-specific translational accordingly and thereby facilitate proper development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Doença/genética , Humanos , Metiltransferases/genética , Camundongos , Transcrição Gênica
16.
Nat Cell Biol ; 20(9): 1074-1083, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30154548

RESUMO

N6-methyladenosine (m6A) messenger RNA methylation is a gene regulatory mechanism affecting cell differentiation and proliferation in development and cancer. To study the roles of m6A mRNA methylation in cell proliferation and tumorigenicity, we investigated human endometrial cancer in which a hotspot R298P mutation is present in a key component of the methyltransferase complex (METTL14). We found that about 70% of endometrial tumours exhibit reductions in m6A methylation that are probably due to either this METTL14 mutation or reduced expression of METTL3, another component of the methyltransferase complex. These changes lead to increased proliferation and tumorigenicity of endometrial cancer cells, likely through activation of the AKT pathway. Reductions in m6A methylation lead to decreased expression of the negative AKT regulator PHLPP2 and increased expression of the positive AKT regulator mTORC2. Together, these results reveal reduced m6A mRNA methylation as an oncogenic mechanism in endometrial cancer and identify m6A methylation as a regulator of AKT signalling.


Assuntos
Adenosina/análogos & derivados , Carcinogênese , Proliferação de Células , Neoplasias do Endométrio/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , RNA Neoplásico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animais , Linhagem Celular Tumoral , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos Nus , Mutação , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , RNA Mensageiro/genética , RNA Neoplásico/genética , Transdução de Sinais , Fatores de Tempo , Carga Tumoral
17.
Elife ; 52016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26895087

RESUMO

The SWI/SNF-family remodelers regulate chromatin structure by coupling the free energy from ATP hydrolysis to the repositioning and restructuring of nucleosomes, but how the ATPase activity of these enzymes drives the motion of DNA across the nucleosome remains unclear. Here, we used single-molecule FRET to monitor the remodeling of mononucleosomes by the yeast SWI/SNF remodeler, RSC. We observed that RSC primarily translocates DNA around the nucleosome without substantial displacement of the H2A-H2B dimer. At the sites where DNA enters and exits the nucleosome, the DNA moves largely along or near its canonical wrapping path. The translocation of DNA occurs in a stepwise manner, and at both sites where DNA enters and exits the nucleosome, the step size distributions exhibit a peak at approximately 1-2 bp. These results suggest that the movement of DNA across the nucleosome is likely coupled directly to DNA translocation by the ATPase at its binding site inside the nucleosome.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transferência Ressonante de Energia de Fluorescência , Histonas/análise
18.
Nat Chem ; 9(11): 1040-1042, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29064503
19.
Nat Struct Mol Biol ; 17(12): 1453-60, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21102446

RESUMO

Human immunodeficiency virus (HIV) initiates reverse transcription of its viral RNA (vRNA) genome from a cellular tRNA(3)(Lys) primer. This process is characterized by a slow initiation phase with specific pauses, followed by a fast elongation phase. We report a single-molecule study that monitors the dynamics of individual initiation complexes, comprised of vRNA, tRNA and HIV reverse transcriptase (RT). RT transitions between two opposite binding orientations on tRNA-vRNA complexes, and the prominent pausing events are related to RT binding in a flipped orientation opposite to the polymerization-competent configuration. A stem-loop structure within the vRNA is responsible for maintaining the enzyme predominantly in this flipped orientation. Disruption of the stem-loop structure triggers the initiation-to-elongation transition. These results highlight the important role of the structural dynamics of the initiation complex in directing transitions between early reverse transcription phases.


Assuntos
HIV-1/genética , RNA Viral/química , Transcrição Reversa/fisiologia , DNA/biossíntese , Transferência Ressonante de Energia de Fluorescência , Modelos Genéticos , Conformação de Ácido Nucleico , DNA Polimerase Dirigida por RNA/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa