Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 24(4): 255-272, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36316383

RESUMO

The classical role of AMP-activated protein kinase (AMPK) is as a cellular energy sensor activated by falling energy status, signalled by increases in AMP to ATP and ADP to ATP ratios. Once activated, AMPK acts to restore energy homeostasis by promoting ATP-producing catabolic pathways while inhibiting energy-consuming processes. In this Review, we provide an update on this canonical (AMP/ADP-dependent) activation mechanism, but focus mainly on recently described non-canonical pathways, including those by which AMPK senses the availability of glucose, glycogen or fatty acids and by which it senses damage to lysosomes and nuclear DNA. We also discuss new findings on the regulation of carbohydrate and lipid metabolism, mitochondrial and lysosomal homeostasis, and DNA repair. Finally, we discuss the role of AMPK in cancer, obesity, diabetes, nonalcoholic steatohepatitis (NASH) and other disorders where therapeutic targeting may exert beneficial effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Metabolismo Energético , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo dos Lipídeos , Glucose/metabolismo , Trifosfato de Adenosina/metabolismo
3.
Mol Cell ; 68(2): 336-349.e6, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053957

RESUMO

The roles of CDK4 in the cell cycle have been extensively studied, but less is known about the mechanisms underlying the metabolic regulation by CDK4. Here, we report that CDK4 promotes anaerobic glycolysis and represses fatty acid oxidation in mouse embryonic fibroblasts (MEFs) by targeting the AMP-activated protein kinase (AMPK). We also show that fatty acid oxidation (FAO) is specifically induced by AMPK complexes containing the α2 subunit. Moreover, we report that CDK4 represses FAO through direct phosphorylation and inhibition of AMPKα2. The expression of non-phosphorylatable AMPKα2 mutants, or the use of a CDK4 inhibitor, increased FAO rates in MEFs and myotubes. In addition, Cdk4-/- mice have increased oxidative metabolism and exercise capacity. Inhibition of CDK4 mimicked these alterations in normal mice, but not when skeletal muscle was AMPK deficient. This novel mechanism explains how CDK4 promotes anabolism by blocking catabolic processes (FAO) that are activated by AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Ácidos Graxos/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/genética , Animais , Quinase 4 Dependente de Ciclina/genética , Embrião de Mamíferos/metabolismo , Ácidos Graxos/genética , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Mutação , Oxirredução
4.
Biochem J ; 481(8): 587-599, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38592738

RESUMO

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status. When activated by increases in ADP:ATP and/or AMP:ATP ratios (signalling energy deficit), AMPK acts to restore energy balance. Binding of AMP to one or more of three CBS repeats (CBS1, CBS3, CBS4) on the AMPK-γ subunit activates the kinase complex by three complementary mechanisms: (i) promoting α-subunit Thr172 phosphorylation by the upstream kinase LKB1; (ii) protecting against Thr172 dephosphorylation; (iii) allosteric activation. Surprisingly, binding of ADP has been reported to mimic the first two effects, but not the third. We now show that at physiologically relevant concentrations of Mg.ATP2- (above those used in the standard assay) ADP binding does cause allosteric activation. However, ADP causes only a modest activation because (unlike AMP), at concentrations just above those where activation becomes evident, ADP starts to cause competitive inhibition at the catalytic site. Our results cast doubt on the physiological relevance of the effects of ADP and suggest that AMP is the primary activator in vivo. We have also made mutations to hydrophobic residues involved in binding adenine nucleotides at each of the three γ subunit CBS repeats of the human α2ß2γ1 complex and examined their effects on regulation by AMP and ADP. Mutation of the CBS3 site has the largest effects on all three mechanisms of AMP activation, especially at lower ATP concentrations, while mutation of CBS4 reduces the sensitivity to AMP. All three sites appear to be required for allosteric activation by ADP.


Assuntos
Proteínas Quinases Ativadas por AMP , Difosfato de Adenosina , Monofosfato de Adenosina , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Humanos , Regulação Alostérica , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/química , Ligantes , Fosforilação , Trifosfato de Adenosina/metabolismo , Ativação Enzimática , Ligação Proteica
5.
Nat Rev Mol Cell Biol ; 13(4): 251-62, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22436748

RESUMO

AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/fisiologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apetite/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hipotálamo/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Xenobióticos/farmacologia
6.
Biochem J ; 480(23): 1951-1968, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37962491

RESUMO

The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status activated by increases in AMP or ADP relative to ATP. Once activated, it phosphorylates targets that promote ATP-generating catabolic pathways or inhibit ATP-consuming anabolic pathways, helping to restore cellular energy balance. Analysis of human cancer genome studies reveals that the PRKAA2 gene (encoding the α2 isoform of the catalytic subunit) is often subject to mis-sense mutations in cancer, particularly in melanoma and non-melanoma skin cancers, where up to 70 mis-sense mutations have been documented, often accompanied by loss of the tumour suppressor NF1. Recently it has been reported that knockout of PRKAA2 in NF1-deficient melanoma cells promoted anchorage-independent growth in vitro, as well as growth as xenografts in immunodeficient mice in vivo, suggesting that AMPK-α2 can act as a tumour suppressor in that context. However, very few of the mis-sense mutations in PRKAA2 that occur in human skin cancer and melanoma have been tested to see whether they cause loss-of-function. We have addressed this by making most of the reported mutations and testing their activity when expressed in AMPK knockout cells. Of 55 different mis-sense mutations (representing 75 cases), 9 (12%) appeared to cause a total loss of activity, 18 (24%) a partial loss, 11 (15%) an increase in phenformin-stimulated kinase activity, while just 37 (49%) had no clear effect on kinase activity. This supports the idea that AMPK-α2 acts as a tumour suppressor in the context of human skin cancer.


Assuntos
Melanoma , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Domínio Catalítico , Melanoma/genética , Mutação , Neoplasias Cutâneas/genética
7.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34493662

RESUMO

Mitochondria form a complex, interconnected reticulum that is maintained through coordination among biogenesis, dynamic fission, and fusion and mitophagy, which are initiated in response to various cues to maintain energetic homeostasis. These cellular events, which make up mitochondrial quality control, act with remarkable spatial precision, but what governs such spatial specificity is poorly understood. Herein, we demonstrate that specific isoforms of the cellular bioenergetic sensor, 5' AMP-activated protein kinase (AMPKα1/α2/ß2/γ1), are localized on the outer mitochondrial membrane, referred to as mitoAMPK, in various tissues in mice and humans. Activation of mitoAMPK varies across the reticulum in response to energetic stress, and inhibition of mitoAMPK activity attenuates exercise-induced mitophagy in skeletal muscle in vivo. Discovery of a mitochondrial pool of AMPK and its local importance for mitochondrial quality control underscores the complexity of sensing cellular energetics in vivo that has implications for targeting mitochondrial energetics for disease treatment.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Mitocôndrias/patologia , Mitofagia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/genética , Animais , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo
8.
Nature ; 548(7665): 112-116, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28723898

RESUMO

The major energy source for most cells is glucose, from which ATP is generated via glycolysis and/or oxidative metabolism. Glucose deprivation activates AMP-activated protein kinase (AMPK), but it is unclear whether this activation occurs solely via changes in AMP or ADP, the classical activators of AMPK. Here, we describe an AMP/ADP-independent mechanism that triggers AMPK activation by sensing the absence of fructose-1,6-bisphosphate (FBP), with AMPK being progressively activated as extracellular glucose and intracellular FBP decrease. When unoccupied by FBP, aldolases promote the formation of a lysosomal complex containing at least v-ATPase, ragulator, axin, liver kinase B1 (LKB1) and AMPK, which has previously been shown to be required for AMPK activation. Knockdown of aldolases activates AMPK even in cells with abundant glucose, whereas the catalysis-defective D34S aldolase mutant, which still binds FBP, blocks AMPK activation. Cell-free reconstitution assays show that addition of FBP disrupts the association of axin and LKB1 with v-ATPase and ragulator. Importantly, in some cell types AMP/ATP and ADP/ATP ratios remain unchanged during acute glucose starvation, and intact AMP-binding sites on AMPK are not required for AMPK activation. These results establish that aldolase, as well as being a glycolytic enzyme, is a sensor of glucose availability that regulates AMPK.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Frutose-Bifosfato Aldolase/metabolismo , Frutosedifosfatos/metabolismo , Glucose/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Proteína Axina/metabolismo , Sítios de Ligação , Ativação Enzimática , Fibroblastos , Frutose-Bifosfato Aldolase/genética , Glucose/deficiência , Humanos , Masculino , Camundongos , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo
9.
Biochem J ; 479(22): 2327-2343, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36383046

RESUMO

A casual decision made one evening in 1976, in a bar near the Biochemistry Department at the University of Dundee, led me to start my personal research journey by following up a paper that suggested that acetyl-CoA carboxylase (ACC) (believed to be a key regulatory enzyme of fatty acid synthesis) was inactivated by phosphorylation by what appeared to be a novel, cyclic AMP-independent protein kinase. This led me to define and name the AMP-activated protein kinase (AMPK) signalling pathway, on which I am still working 46 years later. ACC was the first known downstream target for AMPK, but at least 100 others have now been identified. This article contains some personal reminiscences of that research journey, focussing on: (i) the early days when we were defining the kinase and developing the key tools required to study it; (ii) the late 1990s and early 2000s, an exciting time when we and others were identifying the upstream kinases; (iii) recent times when we have been studying the complex role of AMPK in cancer. The article is published in conjunction with the Sir Philip Randle Lecture of the Biochemical Society, which I gave in September 2022 at the European Workshop on AMPK and AMPK-related kinases in Clydebank, Scotland. During the early years of my research career, Sir Philip acted as a role model, due to his pioneering work on insulin signalling and the regulation of pyruvate dehydrogenase.


Assuntos
Proteínas Quinases Ativadas por AMP , Proteínas Serina-Treonina Quinases , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Complexos Multienzimáticos/metabolismo , Acetil-CoA Carboxilase/metabolismo , Fosforilação
10.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203624

RESUMO

AMP-activated protein kinase (AMPK) is the central component of a signalling pathway that senses energy stress and triggers a metabolic switch away from anabolic processes and towards catabolic processes. There has been a prolonged focus in the pharmaceutical industry on the development of AMPK-activating drugs for the treatment of metabolic disorders such as Type 2 diabetes and non-alcoholic fatty liver disease. However, recent findings suggest that AMPK inhibitors might be efficacious for treating certain cancers, especially lung adenocarcinomas, in which the PRKAA1 gene (encoding the α1 catalytic subunit isoform of AMPK) is often amplified. Here, we study two potent AMPK inhibitors, BAY-3827 and SBI-0206965. Despite not being closely related structurally, the treatment of cells with either drug unexpectedly caused increases in AMPK phosphorylation at the activating site, Thr172, even though the phosphorylation of several downstream targets in different subcellular compartments was completely inhibited. Surprisingly, the two inhibitors appear to promote Thr172 phosphorylation by different mechanisms: BAY-3827 primarily protects against Thr172 dephosphorylation, while SBI-0206965 also promotes phosphorylation by LKB1 at low concentrations, while increasing cellular AMP:ATP ratios at higher concentrations. Due to its greater potency and fewer off-target effects, BAY-3827 is now the inhibitor of choice for cell studies, although its low bioavailability may limit its use in vivo.


Assuntos
Benzamidas , Diabetes Mellitus Tipo 2 , Neoplasias Pulmonares , Pirimidinas , Humanos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Ativadas por AMP
11.
FASEB J ; 34(5): 6284-6301, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32201986

RESUMO

Mitophagy is a key process regulating mitochondrial quality control. Several mechanisms have been proposed to regulate mitophagy, but these have mostly been studied using stably expressed non-native proteins in immortalized cell lines. In skeletal muscle, mitophagy and its molecular mechanisms require more thorough investigation. To measure mitophagy directly, we generated a stable skeletal muscle C2C12 cell line, expressing a mitophagy reporter construct (mCherry-green fluorescence protein-mtFIS1101-152 ). Here, we report that both carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment and adenosine monophosphate activated protein kinase (AMPK) activation by 991 promote mitochondrial fission via phosphorylation of MFF and induce mitophagy by ~20%. Upon CCCP treatment, but not 991, ubiquitin phosphorylation, a read-out of PTEN-induced kinase 1 (PINK1) activity, and Parkin E3 ligase activity toward CDGSH iron sulfur domain 1 (CISD1) were increased. Although the PINK1-Parkin signaling pathway is active in response to CCCP treatment, we observed no change in markers of mitochondrial protein content. Interestingly, our data shows that TANK-binding kinase 1 (TBK1) phosphorylation is increased after both CCCP and 991 treatments, suggesting TBK1 activation to be independent of both PINK1 and Parkin. Finally, we confirmed in non-muscle cell lines that TBK1 phosphorylation occurs in the absence of PINK1 and is regulated by AMPK-dependent signaling. Thus, AMPK activation promotes mitophagy by enhancing mitochondrial fission (via MFF phosphorylation) and autophagosomal engulfment (via TBK1 activation) in a PINK1-Parkin independent manner.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dinâmica Mitocondrial , Mitofagia , Músculo Esquelético/patologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Ativação Enzimática , Células HeLa , Humanos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Ionóforos de Próton/farmacologia , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
13.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429235

RESUMO

We live and to do so we must breathe and eat, so are we a combination of what we eat and breathe? Here, we will consider this question, and the role in this respect of the AMP-activated protein kinase (AMPK). Emerging evidence suggests that AMPK facilitates central and peripheral reflexes that coordinate breathing and oxygen supply, and contributes to the central regulation of feeding and food choice. We propose, therefore, that oxygen supply to the body is aligned with not only the quantity we eat, but also nutrient-based diet selection, and that the cell-specific expression pattern of AMPK subunit isoforms is critical to appropriate system alignment in this respect. Currently available information on how oxygen supply may be aligned with feeding and food choice, or vice versa, through our motivation to breathe and select particular nutrients is sparse, fragmented and lacks any integrated understanding. By addressing this, we aim to provide the foundations for a clinical perspective that reveals untapped potential, by highlighting how aberrant cell-specific changes in the expression of AMPK subunit isoforms could give rise, in part, to known associations between metabolic disease, such as obesity and type 2 diabetes, sleep-disordered breathing, pulmonary hypertension and acute respiratory distress syndrome.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Oxigênio/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Dieta , Humanos , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Isoformas de Proteínas/metabolismo , Respiração , Transtornos Respiratórios/metabolismo , Transtornos Respiratórios/patologia , Termogênese
14.
Circ Res ; 120(11): 1825-1841, 2017 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-28546359

RESUMO

The AMP-activated protein kinase (AMPK) is a key regulator of cellular and whole-body energy homeostasis, which acts to restore energy homoeostasis whenever cellular energy charge is depleted. Over the last 2 decades, it has become apparent that AMPK regulates several other cellular functions and has specific roles in cardiovascular tissues, acting to regulate cardiac metabolism and contractile function, as well as promoting anticontractile, anti-inflammatory, and antiatherogenic actions in blood vessels. In this review, we discuss the role of AMPK in the cardiovascular system, including the molecular basis of mutations in AMPK that alter cardiac physiology and the proposed mechanisms by which AMPK regulates vascular function under physiological and pathophysiological conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/fisiologia , Doenças Cardiovasculares/enzimologia , Sistema Cardiovascular/enzimologia , Transdução de Sinais/fisiologia , Animais , Doenças Cardiovasculares/patologia , Sistema Cardiovascular/patologia , Humanos , Remodelação Vascular/fisiologia
15.
Nat Rev Mol Cell Biol ; 8(10): 774-85, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17712357

RESUMO

The SNF1/AMP-activated protein kinase (AMPK) family maintains the balance between ATP production and consumption in all eukaryotic cells. The kinases are heterotrimers that comprise a catalytic subunit and regulatory subunits that sense cellular energy levels. When energy status is compromised, the system activates catabolic pathways and switches off protein, carbohydrate and lipid biosynthesis, as well as cell growth and proliferation. Surprisingly, recent results indicate that the AMPK system is also important in functions that go beyond the regulation of energy homeostasis, such as the maintenance of cell polarity in epithelial cells.


Assuntos
Sequência Conservada , Metabolismo Energético/fisiologia , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Animais , Humanos , Complexos Multienzimáticos/química , Proteínas Serina-Treonina Quinases/química
16.
Nature ; 493(7432): 346-55, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23325217

RESUMO

Metabolic changes in cells that participate in inflammation, such as activated macrophages and T-helper 17 cells, include a shift towards enhanced glucose uptake, glycolysis and increased activity of the pentose phosphate pathway. Opposing roles in these changes for hypoxia-inducible factor 1α and AMP-activated protein kinase have been proposed. By contrast, anti-inflammatory cells, such as M2 macrophages, regulatory T cells and quiescent memory T cells, have lower glycolytic rates and higher levels of oxidative metabolism. Some anti-inflammatory agents might act by inducing, through activation of AMP-activated protein kinase, a state akin to pseudo-starvation. Altered metabolism may thus participate in the signal-directed programs that promote or inhibit inflammation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/metabolismo , Inanição/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Glucose/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Sirtuínas/metabolismo , Inanição/induzido quimicamente , Linfócitos T/imunologia
17.
Biochem J ; 475(18): 2969-2983, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30135087

RESUMO

AMP-activated protein kinase (AMPK) is a key regulator of cellular and systemic energy homeostasis which achieves this through the phosphorylation of a myriad of downstream targets. One target is TBC1D1 a Rab-GTPase-activating protein that regulates glucose uptake in muscle cells by integrating insulin signalling with that promoted by muscle contraction. Ser237 in TBC1D1 is a target for phosphorylation by AMPK, an event which may be important in regulating glucose uptake. Here, we show AMPK heterotrimers containing the α1, but not the α2, isoform of the catalytic subunit form an unusual and stable association with TBC1D1, but not its paralogue AS160. The interaction between the two proteins is direct, involves a dual interaction mechanism employing both phosphotyrosine-binding (PTB) domains of TBC1D1 and is increased by two different pharmacological activators of AMPK (AICAR and A769962). The interaction enhances the efficiency by which AMPK phosphorylates TBC1D1 on its key regulatory site, Ser237 Furthermore, the interaction is reduced by a naturally occurring R125W mutation in the PTB1 domain of TBC1D1, previously found to be associated with severe familial obesity in females, with a concomitant reduction in Ser237 phosphorylation. Our observations provide evidence for a functional difference between AMPK α-subunits and extend the repertoire of protein kinases that interact with substrates via stabilisation mechanisms that modify the efficacy of substrate phosphorylation.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Mutação de Sentido Incorreto , Obesidade/enzimologia , Proteínas Quinases Ativadas por AMP/genética , Substituição de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Animais , Feminino , Proteínas Ativadoras de GTPase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Obesidade/genética , Fosforilação , Ribonucleotídeos/genética , Ribonucleotídeos/metabolismo , Caracteres Sexuais
18.
Genes Dev ; 25(18): 1895-908, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21937710

RESUMO

AMP-activated protein kinase (AMPK) is a sensor of energy status that maintains cellular energy homeostasis. It arose very early during eukaryotic evolution, and its ancestral role may have been in the response to starvation. Recent work shows that the kinase is activated by increases not only in AMP, but also in ADP. Although best known for its effects on metabolism, AMPK has many other functions, including regulation of mitochondrial biogenesis and disposal, autophagy, cell polarity, and cell growth and proliferation. Both tumor cells and viruses establish mechanisms to down-regulate AMPK, allowing them to escape its restraining influences on growth.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Células/enzimologia , Metabolismo Energético , Animais , Polaridade Celular , Proliferação de Células , Células/citologia , Regulação Enzimológica da Expressão Gênica , Humanos , Mitocôndrias/enzimologia , Neoplasias/enzimologia , Viroses/enzimologia
19.
Diabetologia ; 60(9): 1577-1585, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28776086

RESUMO

Metformin is a widely-used drug that results in clear benefits in relation to glucose metabolism and diabetes-related complications. The mechanisms underlying these benefits are complex and still not fully understood. Physiologically, metformin has been shown to reduce hepatic glucose production, yet not all of its effects can be explained by this mechanism and there is increasing evidence of a key role for the gut. At the molecular level the findings vary depending on the doses of metformin used and duration of treatment, with clear differences between acute and chronic administration. Metformin has been shown to act via both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms; by inhibition of mitochondrial respiration but also perhaps by inhibition of mitochondrial glycerophosphate dehydrogenase, and a mechanism involving the lysosome. In the last 10 years, we have moved from a simple picture, that metformin improves glycaemia by acting on the liver via AMPK activation, to a much more complex picture reflecting its multiple modes of action. More work is required to truly understand how this drug works in its target population: individuals with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Biguanidas/uso terapêutico , Diabetes Mellitus Tipo 2/enzimologia , Humanos
20.
Am J Physiol Heart Circ Physiol ; 313(2): H283-H292, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28550180

RESUMO

PRKAG2 encodes the γ2-subunit isoform of 5'-AMP-activated protein kinase (AMPK), a heterotrimeric enzyme with major roles in the regulation of energy metabolism in response to cellular stress. Mutations in PRKAG2 have been implicated in a unique hypertrophic cardiomyopathy (HCM) characterized by cardiac glycogen overload, ventricular preexcitation, and hypertrophy. We identified a novel, de novo PRKAG2 mutation (K475E) in a neonate with prenatal onset of HCM. We aimed to investigate the cellular impact, signaling pathways involved, and therapeutic options for K475E mutation using cells stably expressing human wild-type (WT) or the K475E mutant. In human embryonic kidney-293 cells, the K475E mutation induced a marked increase in the basal phosphorylation of T172 and AMPK activity, reduced sensitivity to AMP in allosteric activation, and a loss of response to phenformin. In H9c2 cardiomyocytes, the K475E mutation induced inhibition of AMPK and reduced the response to phenformin and increases in the phosphorylation of p70S6 kinase (p70S6K) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). Primary fibroblasts from the patient with the K475E mutation also showed marked increases in the phosphorylation of p70S6K and 4E-BP1 compared with those from age-matched, nondiseased controls. Moreover, overexpression of K475E induced hypertrophy in H9c2 cells, which was effectively reversed by treatment with rapamycin. Taken together, we have identified a novel, de novo infantile-onset PRKAG2 mutation causing HCM. Our study suggests the K475E mutation induces alteration in basal AMPK activity and results in a hypertrophy phenotype involving the mechanistic target of rapamycin signaling pathway, which can be reversed with rapamycin.NEW & NOTEWORTHY We identified a novel, de novo PRKAG2 mutation (K475E) in the cystathionine ß-synthase 3 repeat, a region critical for AMP binding but with no previous reported mutation. Our data suggest the mutation affects AMP-activated protein kinase activity, activates cell growth pathways, and results in cardiac hypertrophy, which can be reversed with rapamycin.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Cardiomiopatia Hipertrófica/genética , Mutação de Sentido Incorreto , Miócitos Cardíacos/enzimologia , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Monofosfato de Adenosina/metabolismo , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/enzimologia , Cardiomiopatia Hipertrófica/fisiopatologia , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Análise Mutacional de DNA , Ativação Enzimática , Fibroblastos/enzimologia , Fibroblastos/patologia , Predisposição Genética para Doença , Células HEK293 , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenformin/farmacologia , Fenótipo , Fosfoproteínas/metabolismo , Fosforilação , Conformação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa