Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(5): e2350715, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446066

RESUMO

Although a role for TLR2 on T cells has been indicated in prior studies, in vivo stimulation of TLR2 on T cells by Mtb and its impact on Mtb infection has not been tested. Furthermore, it is not known if the enhanced susceptibility to Mtb of Tlr2 gene knockout mice is due to its role in macrophages, T cells, or both. To address TLR2 on T cells, we generated Tlr2fl/flxCd4cre/cre mice, which lack expression of TLR2 on both CD4 and CD8 T cells, to study the in vivo role of TLR2 on T cells after aerosol infection with virulent Mtb. Deletion of TLR2 in CD4+ and CD8+ T cells reduces their ability to be co-stimulated by TLR2 ligands for cytokine production. These include both pro- (IFN-γ, TNF-α) and anti-inflammatory cytokines (IL-10). Deletion of TLR2 in T cells affected control of Mtb in the lungs and spleens of infected mice. This suggests that T-cell co-stimulation by mycobacterial TLR2 ligands in vivo contributes to the control of Mtb infection in the lung and spleen.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Camundongos Knockout , Mycobacterium tuberculosis , Receptor 2 Toll-Like , Tuberculose , Animais , Receptor 2 Toll-Like/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Camundongos Endogâmicos C57BL , Pulmão/imunologia , Pulmão/microbiologia , Baço/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Citocinas/metabolismo , Citocinas/imunologia
2.
J Immunol ; 211(5): 767-781, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486212

RESUMO

The gut microbiome and intestinal immune system are engaged in a dynamic interplay that provides myriad benefits to host health. However, the microbiome can also elicit damaging inflammatory responses, and thus establishing harmonious immune-microbiome interactions is essential to maintain homeostasis. Gut microbes actively coordinate the induction of anti-inflammatory responses that establish these mutualistic interactions. Despite this, the microbial pathways that govern this dialogue remain poorly understood. We investigated the mechanisms through which the gut symbiont Bacteroides thetaiotaomicron exerts its immunomodulatory functions on murine- and human-derived cells. Our data reveal that B. thetaiotaomicron stimulates production of the cytokine IL-10 via secreted factors that are packaged into outer membrane vesicles, in a TLR2- and MyD88-dependent manner. Using a transposon mutagenesis-based screen, we identified a key role for the B. thetaiotaomicron-encoded NADH:ubiquinone oxidoreductase (NQR) complex, which regenerates NAD+ during respiration, in this process. Finally, we found that disruption of NQR reduces the capacity of B. thetaiotaomicron to induce IL-10 by impairing biogenesis of outer membrane vesicles. These data identify a microbial pathway with a previously unappreciated role in gut microbe-mediated immunomodulation that may be targeted to manipulate the capacity of the microbiome to shape host immunity.


Assuntos
Bacteroides thetaiotaomicron , Camundongos , Humanos , Animais , Interleucina-10/metabolismo , Mutagênese , Trato Gastrointestinal , Citocinas/metabolismo
3.
J Immunol ; 211(9): 1385-1396, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37695687

RESUMO

Mycobacterium tuberculosis cell-wall glycolipids such as mannosylated lipoarabinomannan (ManLAM) can inhibit murine CD4+ T cells by blocking TCR signaling. This results in suppression of IL-2 production, reduced T cell proliferation, and induction of CD4+ T cell anergy. This study extended these findings to the interaction between primary human CD4+ T cells and macrophages infected by mycobacteria. Exposure of human CD4+ T cells to ManLAM before activation resulted in loss of polyfunctionality, as measured by IL-2, IFN-γ, and TNF-α expression, and reduced CD25 expression. This was not associated with upregulation of inhibitory receptors CTLA-4, PD-1, TIM-3, and Lag-3. By confocal microscopy and imaging flow cytometry, ManLAM exposure reduced conjugate formation between macrophages and CD4+ T cells. ManLAM colocalized to the immunological synapse (IS) and reduced translocation of lymphocyte-specific protein tyrosine kinase (LCK) to the IS. When CD4+ T cells and Mycobacterium bovis BCG-infected monocytes were cocultured, ManLAM colocalized to CD4+ T cells, which formed fewer conjugates with infected monocytes. These results demonstrate that mycobacterial cell-wall glycolipids such as ManLAM can traffic from infected macrophages to disrupt productive IS formation and inhibit CD4+ T cell activation, contributing to immune evasion by M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Humanos , Linfócitos T CD4-Positivos , Glicolipídeos/metabolismo , Sinapses Imunológicas , Interleucina-2/metabolismo , Macrófagos/microbiologia
4.
Circ Res ; 128(8): 1214-1236, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33856918

RESUMO

A pandemic of historic impact, coronavirus disease 2019 (COVID-19) has potential consequences on the cardiovascular health of millions of people who survive infection worldwide. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can infect the heart, vascular tissues, and circulating cells through ACE2 (angiotensin-converting enzyme 2), the host cell receptor for the viral spike protein. Acute cardiac injury is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. This update provides a review of the clinical manifestations of cardiovascular involvement, potential direct SARS-CoV-2 and indirect immune response mechanisms impacting the cardiovascular system, and implications for the management of patients after recovery from acute COVID-19 infection.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Doenças Cardiovasculares/virologia , Miócitos Cardíacos/virologia , SARS-CoV-2/fisiologia , Internalização do Vírus , Biomarcadores/metabolismo , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/terapia , Cardiomiopatias/virologia , Expressão Gênica , Humanos , Sistema Imunitário/fisiologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Neuropilina-1/metabolismo , Ativação Plaquetária , RNA Mensageiro/metabolismo , Sistema Renina-Angiotensina/fisiologia , Volta ao Esporte , Fatores de Risco , SARS-CoV-2/ultraestrutura , Glicoproteína da Espícula de Coronavírus/metabolismo , Troponina/metabolismo , Remodelação Ventricular , Ligação Viral , Internalização do Vírus/efeitos dos fármacos
5.
J Thromb Thrombolysis ; 53(4): 950-953, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34797472

RESUMO

Over the last few years data from our group have indicated that α-synuclein is important in development of immune cells as well as potentially erythrocytes and platelets. The latter is important since this protein may work as negative regulator of granule release. Thus, we sought to begin to understand the structure of this protein in platelets. Flow cytometric analysis of this protein using region-specific (N-terminus, central region and C-terminus) monoclonal antibodies was performed. Antibody to the central region gave the strongest shift among all three antibodies, with the C-terminus having intermediate shift and N-terminus minimal shift. Western blotting using the same antibodies showed similar binding of all antibodies to α-synuclein. These results suggest a similar arrangement of this protein in platelets as seen in neurons. Future studies ought to look at the role that each protein region plays in platelets.


Assuntos
Plaquetas , alfa-Sinucleína , Anticorpos Monoclonais , Plaquetas/metabolismo , Citometria de Fluxo , Humanos , alfa-Sinucleína/análise , alfa-Sinucleína/metabolismo
6.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33077627

RESUMO

This study investigated responses to Toll-like receptor 2 (TLR2)-driven extracellular signal-related kinase (ERK) signaling in dendritic cells (DCs) versus macrophages. TLR2 signaling was induced with Pam3Cys-Ser-Lys4, and the role of ERK signaling was interrogated pharmacologically with MEK1/2 inhibitor U0126 or genetically with bone marrow-derived macrophages or DCs from Tpl2-/- mice. We assessed cytokine production via enzyme-linked immunosorbent assay (ELISA) or V-Plex, and mRNA levels were assessed via reverse transcriptase quantitative PCR (qRT-PCR). In macrophages, blockade of ERK signaling by pharmacologic or genetic approaches inhibited interleukin 10 (IL-10) expression and increased expression of the p40 subunit shared by IL-12 and IL-23 (IL-12/23p40). In DCs, blockade of ERK signaling similarly inhibited IL-10 expression but decreased IL-12/23p40 expression, which is opposite to the effect of ERK signaling blockade on IL-12/23p40 in macrophages. This difference in IL-12/23p40 regulation correlated with the differential expression of transcription factors cFos and IRF1, which are known to regulate IL-12 family members, including IL-12 and IL-23. Thus, the impact of ERK signaling in response to TLR2 stimulation differs between macrophages and DCs, potentially regulating their distinctive functions in the immune system. ERK-mediated suppression of IL-12/23p40 in macrophages may prevent excessive inflammation and associated tissue damage following TLR2-stimulation, while ERK-mediated induction of IL-12/23p40 in DCs may promote priming of T helper 1 (Th1) responses. A greater understanding of the role that ERK signaling plays in different immune cell types may inform the development of host-directed therapy and optimal adjuvanticity for a number of infectious pathogens.


Assuntos
Células Dendríticas/metabolismo , Interleucina-12/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Células Dendríticas/imunologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Interleucina-10/metabolismo , MAP Quinase Quinase Quinases/genética , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas/genética
7.
Eur J Haematol ; 103(2): 99-106, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31107976

RESUMO

OBJECTIVES: Type II heparin-induced thrombocytopenia (HIT) is mediated by formation of antibodies to platelet factor 4 (PF4)-heparin complexes. We evaluated anti-PF4-heparin-negative samples for the presence of additional anti-platelet and anti-red blood cell (RBC) antibodies using whole-cell platelet/ RBC ELISAs we developed. METHODS: Seventy-three samples tested for anti-PF4-heparin by ELISA were included: 62 tested negative, 9 tested positive, and 2 had equivocal results. Plasma specimens from healthy donors were used as controls. RESULTS: 100% (9/9) anti-PF4-positive samples had anti-platelet antibodies detected by whole-cell platelet ELISA. 42.2% (27/64) anti-PF4-heparin-negative samples were negative for anti-platelet and anti-RBC antibodies. 32.8% (21/64) negative samples showed reactivity to both platelets and RBC; 12.5% (8/64) negative samples were each reactive with either platelet or RBC ELISA, respectively. Additionally, two samples that tested equivocal by anti-PF4-heparin ELISA had antibodies to both platelets and RBC by whole-cell ELISA. CONCLUSIONS: Our study suggests that patients with thrombocytopenia testing negative for anti-PF4-heparin may still harbor antibodies to platelets. However, additional research is needed to determine the significance of these antibodies. Nevertheless, these findings may encourage clinicians to further investigate patients with possible immune-mediated etiologies of thrombocytopenia and anemia.


Assuntos
Autoanticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Heparina/efeitos adversos , Trombocitopenia/diagnóstico , Trombocitopenia/etiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Autoanticorpos/sangue , Contagem de Células Sanguíneas , Plaquetas/imunologia , Plaquetas/metabolismo , Estudos de Casos e Controles , Comorbidade , Ensaio de Imunoadsorção Enzimática/métodos , Eritrócitos/imunologia , Eritrócitos/metabolismo , Feminino , Heparina/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Ativação Plaquetária/imunologia , Fator Plaquetário 4/imunologia , Trombocitopenia/sangue
8.
J Immunol ; 198(5): 2028-2037, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28122965

RESUMO

Mycobacterium tuberculosis utilizes multiple mechanisms to evade host immune responses, and inhibition of effector CD4+ T cell responses by M. tuberculosis may contribute to immune evasion. TCR signaling is inhibited by M. tuberculosis cell envelope lipoglycans, such as lipoarabinomannan and lipomannan, but a mechanism for lipoglycans to traffic from M. tuberculosis within infected macrophages to reach T cells is unknown. In these studies, we found that membrane vesicles produced by M. tuberculosis and released from infected macrophages inhibited the activation of CD4+ T cells, as indicated by reduced production of IL-2 and reduced T cell proliferation. Flow cytometry and Western blot demonstrated that lipoglycans from M. tuberculosis-derived bacterial vesicles (BVs) are transferred to T cells, where they inhibit T cell responses. Stimulation of CD4+ T cells in the presence of BVs induced expression of GRAIL, a marker of T cell anergy; upon restimulation, these T cells showed reduced ability to proliferate, confirming a state of T cell anergy. Furthermore, lipoarabinomannan was associated with T cells after their incubation with infected macrophages in vitro and when T cells were isolated from lungs of M. tuberculosis-infected mice, confirming the occurrence of lipoarabinomannan trafficking to T cells in vivo. These studies demonstrate a novel mechanism for the direct regulation of CD4+ T cells by M. tuberculosis lipoglycans conveyed by BVs that are produced by M. tuberculosis and released from infected macrophages. These lipoglycans are transferred to T cells to inhibit T cell responses, providing a mechanism that may promote immune evasion.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Evasão da Resposta Imune , Pulmão/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Vesículas Secretórias/microbiologia , Tuberculose/imunologia , Animais , Proliferação de Células , Células Cultivadas , Anergia Clonal , Feminino , Humanos , Lipopolissacarídeos/imunologia , Pulmão/microbiologia , Ativação Linfocitária , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Vesículas Secretórias/imunologia
9.
Infect Immun ; 86(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30037791

RESUMO

Mycobacterium tuberculosis causes persistent infection due to its ability to evade host immune responses. M. tuberculosis induces Toll-like receptor 2 (TLR2) signaling, which influences immune responses to M. tuberculosis TLR2 agonists expressed by M. tuberculosis include lipoproteins (e.g., LprG), the glycolipid phosphatidylinositol mannoside 6 (PIM6), and the lipoglycan lipomannan (LM). Another M. tuberculosis lipoglycan, mannose-capped lipoarabinomannan (ManLAM), lacks TLR2 agonist activity. In contrast, PILAM, from Mycobacterum smegmatis, does have TLR2 agonist activity. Our understanding of how M. tuberculosis lipoproteins and lipoglycans interact with TLR2 is limited, and binding of these molecules to TLR2 has not been measured directly. Here, we directly measured M. tuberculosis lipoprotein and lipoglycan binding to TLR2 and its partner receptor, TLR1. LprG, LAM, and LM were all found to bind to TLR2 in the absence of TLR1, but not to TLR1 in the absence of TLR2. Trimolecular interactions were revealed by binding of TLR2-LprG or TLR2-PIM6 complexes to TLR1, whereas binding of TLR2 to TLR1 was not detected in the absence of the lipoprotein or glycolipid. ManLAM exhibited low affinity for TLR2 in comparison to PILAM, LM, and LprG, which correlated with reduced ability of ManLAM to induce TLR2-mediated extracellular-signal-regulated kinase (ERK) activation and tumor necrosis factor alpha (TNF-α) secretion in macrophages. We provide the first direct affinity measurement and kinetic analysis of M. tuberculosis lipoprotein and lipoglycan binding to TLR2. Our results demonstrate that binding affinity correlates with the functional ability of agonists to induce TLR2 signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/metabolismo , Animais , Proteínas de Bactérias/genética , Feminino , Humanos , Lipopolissacarídeos/genética , Lipoproteínas/genética , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/genética , Ligação Proteica , Transdução de Sinais , Receptor 1 Toll-Like/genética , Receptor 1 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Tuberculose/genética , Tuberculose/microbiologia
10.
Blood Cells Mol Dis ; 73: 33-37, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195626

RESUMO

Effects of α-synuclein deficiency on cellular blood components have not been extensively investigated. This study evaluated ultrastructural changes of leukocytes in α-synuclein knockout (KO) mice using electron microscopy (EM). The following ultrastructural characteristics were quantified in leukocytes: mitochondria, primary granules, specific granules (SG), Golgi apparatus (GA), inclusions, rough-endoplasmic reticulum (RER), smooth-endoplasmic reticulum (SER), and cellular projections (CP). EM showed increased numbers or amounts of SG, inclusions, and SER in KO group (5.3 ±â€¯4.5 in WT vs. 14.1 ±â€¯10.3 in KO, p = 0.02; 0.4 ±â€¯0.9 in WT vs. 3.2 ±â€¯2.8 in KO, p = 0.007; and 7.7 ±â€¯6.7 in WT vs. 17.7 ±â€¯12.2 in KO, p = 0.03, respectively). Although CP number was not significantly different between the two groups (13.4 ±â€¯5.3 in WT vs. 16.3 ±â€¯7.5 in KO, p = 0.32), their size and shapes were altered in KO mice. Notably, findings occurred in the setting of significant lymphopenia. α-Synuclein deficiency leads to changes in size and shape of secretory particles and increases in SER, SG, and inclusions, indicating a potential role for α-synuclein in vesicular trafficking in leukocytes. Further studies are needed to elucidate functions mediated by α-synuclein.


Assuntos
Leucócitos/ultraestrutura , alfa-Sinucleína/deficiência , Animais , Forma Celular , Extensões da Superfície Celular , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Vesículas Transportadoras , alfa-Sinucleína/genética , alfa-Sinucleína/farmacologia
11.
Eur J Haematol ; 2018 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-30055066

RESUMO

OBJECTIVES: In platelets, α-synuclein is important in calcium-dependent granule release. Notably, cells release α-synuclein in setting of cell damage or death. Therefore, we investigated α-synuclein levels in plasma of single donor platelet (SDP) units during storage. METHODS: Aliquots were obtained from same SDP units for 7 days from day of donation. Additionally, randomly sampled SDP units at same storage time points were also assayed by enzyme-linked immunosorbent assay. RESULTS: α-Synuclein in SDP plasma increased continuously over time at each assayed time point. Significant increases were measured on day 3 (11.7 ± 9.6 ng/mL, P = 0.025), day 5 (15.3 ± 5.9 ng/mL, P = 0.002), and highest on day 7 (23.7 ± 5.6 ng/mL, P < 0.0001) compared to day 0 (1.1 ± 0.8 ng/mL). Similar significant results were obtained in randomly sampled SDP units at same corresponding time points. Flow cytometry showed that platelets had strong expression of α-synuclein and lacked expression of other synucleins. CONCLUSIONS: Increases of α-synuclein during SDP storage is a steady and continuous process that increases with time. Our findings indicate that α-synuclein may represent a biomarker of platelet biological state during storage. Further research will be needed to determine how α-synuclein increases correlate with platelets' function.

12.
J Immunol ; 196(2): 691-702, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26667170

RESUMO

Mycobacterium tuberculosis cell wall glycolipid, lipoarabinomannan, can inhibit CD4(+) T cell activation by downregulating the phosphorylation of key proximal TCR signaling molecules: Lck, CD3ζ, ZAP70, and LAT. Inhibition of proximal TCR signaling can result in T cell anergy, in which T cells are inactivated following an Ag encounter, yet remain viable and hyporesponsive. We tested whether mannose-capped lipoarabinomannan (LAM)-induced inhibition of CD4(+) T cell activation resulted in CD4(+) T cell anergy. The presence of LAM during primary stimulation of P25 TCR-transgenic murine CD4(+) T cells with M. tuberculosis Ag85B peptide resulted in decreased proliferation and IL-2 production. P25 TCR-transgenic CD4(+) T cells primed in the presence of LAM also exhibited decreased response upon restimulation with Ag85B. The T cell anergic state persisted after the removal of LAM. Hyporesponsiveness to restimulation was not due to apoptosis, generation of Foxp3-positive regulatory T cells, or inhibitory cytokines. Acquisition of the anergic phenotype correlated with upregulation of gene related to anergy in lymphocytes (GRAIL) protein in CD4(+) T cells. Inhibition of human CD4(+) T cell activation by LAM also was associated with increased GRAIL expression. Small interfering RNA-mediated knockdown of GRAIL before LAM treatment abrogated LAM-induced hyporesponsiveness. In addition, exogenous IL-2 reversed defective proliferation by downregulating GRAIL expression. These results demonstrate that LAM upregulates GRAIL to induce anergy in Ag-reactive CD4(+) T cells. Induction of CD4(+) T cell anergy by LAM may represent one mechanism by which M. tuberculosis evades T cell recognition.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Anergia Clonal/imunologia , Evasão da Resposta Imune/imunologia , Lipopolissacarídeos/imunologia , Tuberculose/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Western Blotting , Células Cultivadas , Homólogo 5 da Proteína Cromobox , Feminino , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Ativação Linfocitária/imunologia , Manose/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Mycobacterium tuberculosis/imunologia , RNA Interferente Pequeno
13.
Proteomics ; 17(22)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28994205

RESUMO

Mycobacterium tuberculosis (Mtb) cell wall glycolipid mannose-capped lipoarabinomannan (ManLAM) inhibits CD4+ T-cell activation by inhibiting proximal T-cell receptor (TCR) signaling when activated by anti-CD3. To understand the impact of ManLAM on CD4+ T-cell function when both the TCR-CD3 complex and major costimulator CD28 are engaged, we performed label-free quantitative MS and network analysis. Mixed-effect model analysis of peptide intensity identified 149 unique peptides representing 131 proteins that were differentially regulated by ManLAM in anti-CD3- and anti-CD28-activated CD4+ T cells. Crosstalker, a novel network analysis tool identified dysregulated translation, TCA cycle, and RNA metabolism network modules. PCNA, Akt, mTOR, and UBC were found to be bridge node proteins connecting these modules of dysregulated proteins. Altered PCNA expression and cell cycle analysis showed arrest at the G2M phase. Western blot confirmed that ManLAM inhibited Akt and mTOR phosphorylation, and decreased expression of deubiquitinating enzymes Usp9x and Otub1. Decreased NF-κB phosphorylation suggested interference with CD28 signaling through inhibition of the Usp9x-Akt-mTOR pathway. Thus, ManLAM induced global changes in the CD4+ T-cell proteome by affecting Akt-mTOR signaling, resulting in broad functional impairment of CD4+ T-cell activation beyond inhibition of proximal TCR-CD3 signaling.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Redes Reguladoras de Genes , Lipopolissacarídeos/farmacologia , Mycobacterium tuberculosis/metabolismo , Proteína Oncogênica v-akt/antagonistas & inibidores , Proteômica/métodos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Ciclo Celular , Feminino , Manose/química , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Proteína Oncogênica v-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
14.
J Immunol ; 195(3): 1044-53, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26109643

RESUMO

Mycobacterium tuberculosis is an intracellular pathogen that infects lung macrophages and releases microbial factors that regulate host defense. M. tuberculosis lipoproteins and lipoglycans block phagosome maturation, inhibit class II MHC Ag presentation, and modulate TLR2-dependent cytokine production, but the mechanisms for their release during infection are poorly defined. Furthermore, these molecules are thought to be incorporated into host membranes and released from infected macrophages within exosomes, 40-150-nm extracellular vesicles that derive from multivesicular endosomes. However, our studies revealed that extracellular vesicles released from infected macrophages include two distinct, largely nonoverlapping populations: one containing host cell markers of exosomes (CD9, CD63) and the other containing M. tuberculosis molecules (lipoglycans, lipoproteins). These vesicle populations are similar in size but have distinct densities, as determined by separation on sucrose gradients. Release of lipoglycans and lipoproteins from infected macrophages was dependent on bacterial viability, implicating active bacterial mechanisms in their secretion. Consistent with recent reports of extracellular vesicle production by bacteria (including M. tuberculosis), we propose that bacterial membrane vesicles are secreted by M. tuberculosis within infected macrophages and subsequently are released into the extracellular environment. Furthermore, extracellular vesicles released from M. tuberculosis-infected cells activate TLR2 and induce cytokine responses by uninfected macrophages. We demonstrate that these activities derive from the bacterial membrane vesicles rather than exosomes. Our findings suggest that bacterial membrane vesicles are the primary means by which M. tuberculosis exports lipoglycans and lipoproteins to impair effector functions of infected macrophages and circulate bacterial components beyond the site of infection to regulate immune responses by uninfected cells.


Assuntos
Exossomos/metabolismo , Macrófagos Alveolares/imunologia , Mycobacterium tuberculosis/imunologia , Vesículas Secretórias/imunologia , Tuberculose Pulmonar/imunologia , Animais , Células Cultivadas , Exossomos/imunologia , Lipopolissacarídeos/imunologia , Lipoproteínas/imunologia , Pulmão/citologia , Pulmão/imunologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptor 2 Toll-Like/metabolismo , Tuberculose Pulmonar/microbiologia
15.
PLoS Pathog ; 10(10): e1004471, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25356793

RESUMO

Mycobacterium tuberculosis (Mtb) virulence is decreased by genetic deletion of the lipoprotein LprG, but the function of LprG remains unclear. We report that LprG expressed in Mtb binds to lipoglycans, such as lipoarabinomannan (LAM), that mediate Mtb immune evasion. Lipoglycan binding to LprG was dependent on both insertion of lipoglycan acyl chains into a hydrophobic pocket on LprG and a novel contribution of lipoglycan polysaccharide components outside of this pocket. An lprG null mutant (Mtb ΔlprG) had lower levels of surface-exposed LAM, revealing a novel role for LprG in determining the distribution of components in the Mtb cell envelope. Furthermore, this mutant failed to inhibit phagosome-lysosome fusion, an immune evasion strategy mediated by LAM. We propose that LprG binding to LAM facilitates its transfer from the plasma membrane into the cell envelope, increasing surface-exposed LAM, enhancing cell envelope integrity, allowing inhibition of phagosome-lysosome fusion and enhancing Mtb survival in macrophages.


Assuntos
Lipopolissacarídeos/metabolismo , Lipoproteínas/metabolismo , Mycobacterium tuberculosis/metabolismo , Fagossomos/metabolismo , Tuberculose/microbiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Lipopolissacarídeos/genética , Lipoproteínas/genética , Macrófagos/imunologia , Fusão de Membrana , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Virulência
16.
Infect Immun ; 83(6): 2242-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25776754

RESUMO

Mycobacterium tuberculosis survives within macrophages and employs immune evasion mechanisms to persist in the host. Protective T helper type 1 (Th1) responses are induced, and the immune response in most individuals is sufficient to restrict M. tuberculosis to latent infection, but most infections are not completely resolved. As T cells and macrophages respond, a balance is established between protective Th1-associated and other proinflammatory cytokines, such as interleukin-12 (IL-12), interferon gamma (IFN-γ), and tumor necrosis factor alpha, and anti-inflammatory cytokines, such as IL-10. The mechanisms by which M. tuberculosis modulates host responses to promote its survival remain unclear. In these studies, we demonstrate that M. tuberculosis induction of IL-10, suppression of IL-12, and inhibition of class II major histocompatibility complex (MHC-II) molecules in infected macrophages are all driven by Toll-like receptor 2 (TLR2)-dependent activation of the extracellular signal-regulated kinases (ERK). Elimination of ERK signaling downstream of TLR2 by pharmacologic inhibition with U0126 or genetic deletion of Tpl2 blocks IL-10 secretion and enhances IL-12 p70 secretion. We demonstrate that M. tuberculosis regulation of these pathways in macrophages affects T cell responses to infected macrophages. Thus, genetic blockade of the ERK pathway in Tpl2(-/-) macrophages enhances Th1 polarization and IFN-γ production by antigen-specific CD4(+) T cells responding to M. tuberculosis infection. These data indicate that M. tuberculosis and its potent TLR2 ligands activate ERK signaling in macrophages to promote anti-inflammatory macrophage responses and blunt Th1 responses against the pathogen.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inflamação/metabolismo , Macrófagos/microbiologia , Mycobacterium tuberculosis/metabolismo , Células Th1/fisiologia , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica/fisiologia , Genes MHC da Classe II/genética , Genes MHC da Classe II/fisiologia , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like
17.
Antimicrob Agents Chemother ; 59(3): 1512-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534736

RESUMO

The dwindling repertoire of antibiotics to treat methicillin-resistant Staphylococcus aureus (MRSA) calls for novel treatment options. Quorum-quenching agents offer an alternative or an adjuvant to antibiotic therapy. Three biaryl hydroxyketone compounds discovered previously (F1, F12, and F19; G. Yu, D. Kuo, M. Shoham, and R. Viswanathan, ACS Comb Sci 16:85-91, 2014) were tested for efficacy in MRSA-infected animal models. Topical therapy of compounds F1 and F12 in a MRSA murine wound infection model promotes wound healing compared to the untreated control. Compounds F1, F12, and F19 afford significant survival benefits in a MRSA insect larva model. Combination therapy of these quorum-quenching agents with cephalothin or nafcillin, antibiotics to which MRSA is resistant in monotherapy, revealed additional survival benefits. The quorum-quenching agents sensitize MRSA to the antibiotic by a synergistic mode of action that also is observed in vitro. An adjuvant of 1 µg/ml F1, F12, or F19 reduces the MIC of nafcillin and cephalothin about 50-fold to values comparable to those for vancomycin, the antibiotic often prescribed for MRSA infections. These findings suggest that it is possible to resurrect obsolete antibiotic therapies in combination with these novel quorum-quenching agents.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , beta-Lactamas/farmacologia , Animais , Linhagem Celular , Cefalotina/farmacologia , Macrófagos/imunologia , Camundongos , Testes de Sensibilidade Microbiana , Nafcilina/farmacologia
18.
Eur J Immunol ; 44(5): 1410-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497180

RESUMO

We have previously demonstrated that mycobacterial lipoproteins engage TLR2 on human CD4(+) T cells and upregulate TCR-triggered IFN-γ secretion and cell proliferation in vitro. Here we examined the role of CD4(+) T-cell-expressed TLR2 in Mycobacterium tuberculosis (MTB) Ag-specific T-cell priming and in protection against MTB infection in vivo. Like their human counterparts, mouse CD4(+) T cells express TLR2 and respond to TLR2 costimulation in vitro. This Th1-like response was observed in the context of both polyclonal and Ag-specific TCR stimulation. To evaluate the role of T-cell TLR2 in priming of CD4(+) T cells in vivo, naive MTB Ag85B-specific TCR transgenic CD4(+) T cells (P25 TCR-Tg) were adoptively transferred into Tlr2(-/-) recipient C57BL/6 mice that were then immunized with Ag85B and with or without TLR2 ligand Pam3 Cys-SKKKK. TLR2 engagement during priming resulted in increased numbers of IFN-γ-secreting P25 TCR-Tg T cells 1 week after immunization. P25 TCR-Tg T cells stimulated in vitro via TCR and TLR2 conferred more protection than T cells stimulated via TCR alone when adoptively transferred before MTB infection. Our findings indicate that TLR2 engagement on CD4(+) T cells increases MTB Ag-specific responses and may contribute to protection against MTB infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/imunologia , Receptor 2 Toll-Like/imunologia , Tuberculose/imunologia , Aciltransferases/biossíntese , Aciltransferases/genética , Aciltransferases/imunologia , Aciltransferases/farmacologia , Animais , Antígenos de Bactérias/biossíntese , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/farmacologia , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Homólogo 5 da Proteína Cromobox , Humanos , Imunização , Interferon gama/biossíntese , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Camundongos Knockout , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Receptor 2 Toll-Like/biossíntese , Receptor 2 Toll-Like/genética , Tuberculose/genética , Tuberculose/metabolismo , Tuberculose/patologia , Tuberculose/prevenção & controle
19.
J Virol ; 88(19): 11430-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25056888

RESUMO

UNLABELLED: The effects of heightened microbial translocation on B cells during HIV infection are unknown. We examined the in vitro effects of HIV and lipopolysaccharide (LPS) on apoptosis of CD27+ IgD- memory B (mB) cells from healthy controls. In vivo analysis was conducted on a cohort of 82 HIV+ donors and 60 healthy controls. In vitro exposure of peripheral blood mononuclear cells (PBMCs) to LPS and HIV led to mB cell death via the Fas/Fas ligand (FasL) pathway. Plasmacytoid dendritic cells (pDCs) produced FasL in response to HIV via binding to CD4 and chemokine coreceptors. HIV and LPS increased Fas expression on mB cells in PBMCs, which was dependent on the presence of pDCs and monocytes. Furthermore, mB cells purified from PBMCs and pretreated with both HIV and LPS were more sensitive to apoptosis when cocultured with HIV-treated pDCs. Blocking the interferon receptor (IFNR) prevented HIV-stimulated FasL production in pDCs, HIV-plus-LPS-induced Fas expression, and apoptosis of mB cells. In vivo or ex vivo, HIV+ donors have higher levels of plasma LPS, Fas expression on mB cells, and mB cell apoptosis than controls. Correspondingly, in HIV+ donors, but not in controls, a positive correlation was found between plasma FasL and HIV RNA levels and between Fas expression on mB cells and plasma LPS levels. This work reveals a novel mechanism of mB cell apoptosis mediated by LPS and HIV through the Fas/FasL pathway, with key involvement of pDCs and type I IFN, suggesting a role for microbial translocation in HIV pathogenesis. IMPORTANCE: This study demonstrates that lipopolysaccharide (LPS) and type I interferon (IFN) play an important role in memory B cell apoptosis in HIV infection. It reveals a previously unrecognized role of microbial translocation in HIV pathogenesis.


Assuntos
Apoptose/imunologia , Linfócitos B/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Lipopolissacarídeos/imunologia , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Bactérias/química , Bactérias/imunologia , Translocação Bacteriana , Separação Celular , Células Cultivadas , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/patologia , Proteína Ligante Fas/genética , Proteína Ligante Fas/imunologia , Regulação da Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/microbiologia , Infecções por HIV/patologia , Interações Hospedeiro-Patógeno , Humanos , Imunoglobulina D/genética , Memória Imunológica , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Monócitos/patologia , Transdução de Sinais , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Receptor fas/genética , Receptor fas/imunologia
20.
Blood ; 121(15): 2914-22, 2013 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-23422746

RESUMO

The determinants of HIV-1-associated lymphadenopathy are poorly understood. We hypothesized that lymphocytes could be sequestered in the HIV-1+ lymph node (LN) through impairments in sphingosine-1-phosphate (S1P) responsiveness. To test this hypothesis, we developed novel assays for S1P-induced Akt phosphorylation and actin polymerization. In the HIV-1+ LN, naïve CD4 T cells and central memory CD4 and CD8 T cells had impaired Akt phosphorylation in response to S1P, whereas actin polymerization responses to S1P were impaired dramatically in all LN maturation subsets. These defects were improved with antiretroviral therapy. LN T cells expressing CD69 were unable to respond to S1P in either assay, yet impaired S1P responses were also seen in HIV-1+ LN T cells lacking CD69 expression. Microbial elements, HIV-1, and interferon α - putative drivers of HIV-1 associated immune activation all tended to increase CD69 expression and reduce T-cell responses to S1P in vitro. Impairment in T-cell egress from lymph nodes through decreased S1P responsiveness may contribute to HIV-1-associated LN enlargement and to immune dysregulation in a key organ of immune homeostasis.


Assuntos
Linfa/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Esfingosina/análogos & derivados , Linfócitos T/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antirretrovirais/uso terapêutico , Antígenos CD/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Citometria de Fluxo , Expressão Gênica/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Linfa/imunologia , Linfa/metabolismo , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/imunologia , Receptores de Lisoesfingolipídeo/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esfingosina/farmacologia , Receptores de Esfingosina-1-Fosfato , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa