Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 48(3): 403-413, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38092957

RESUMO

BACKGROUND: Maternal body size, nutrition, and hyperglycemia contribute to neonatal body size and composition. There is little information on maternal-fetal transmission of messages which influence fetal growth. We analyzed adipocyte-derived small extracellular vesicular (ADsEV) microRNAs in maternal and cord blood to explore their adipogenic potential. METHODS: There were 279 mother-neonate pairs with all phenotypic data (normal glucose tolerant NGT = 148, gestational diabetes mellitus GDM = 131). Neonates with adiposity were those in the highest tertile (T3) of sex-specific sum of skinfolds and those without adiposity (lean) in the lowest tertile T1 of NGT pregnancies. We studied ADsEV miRNAs in 76 and 51 neonates with and without adiposity respectively and their mothers based on power calculations (68 NGT and 59 GDM pregnancies). ADsEV miRNAs from maternal and cord blood plasma samples were profiled on Agilent 8*60 K microarray. Differential expression (DE) of ADsEV miRNAs in adipose vs. lean groups was studied before and after adjustment for maternal GDM, adiposity, and vitamin B12-folate status. RESULTS: Multiple miRNAs were common in maternal and cord blood and positively correlated. We identified 24 maternal and 5 cord blood miRNAs differentially expressed (discovery p ≤ 0.1) in the adipose group in unadjusted, and 19 and 26, respectively, in the adjusted analyses. Even though DE miRNAs were different in maternal and cord blood, they targeted similar adipogenic pathways (e.g., the forkhead box O (FOXO) family of transcription factors, mitogen­activated protein kinase (MAPK) pathway, transforming growth factor beta (TGF-ß) pathway). Maternal GDM and adiposity were associated with many DE ADsEV miRNAs. CONCLUSION: Our results suggest that the ADsEV miRNAs in mothers are potential regulators of fetal adiposity. The expression and functionality of miRNAs appear to be influenced by maternal adiposity, hyperglycemia, and micronutrient status during pregnancy.


Assuntos
Diabetes Gestacional , Hiperglicemia , MicroRNAs , Gravidez , Recém-Nascido , Humanos , Masculino , Feminino , Adiposidade/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Sangue Fetal/metabolismo , Índice de Massa Corporal , Obesidade/metabolismo , Hiperglicemia/metabolismo
2.
Eur Respir J ; 62(2)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321621

RESUMO

BACKGROUND: Severe bronchiolitis (i.e. bronchiolitis requiring hospitalisation) during infancy is a major risk factor for childhood asthma. However, the exact mechanism linking these common conditions remains unclear. We examined the longitudinal relationship between nasal airway miRNAs during severe bronchiolitis and the risk of developing asthma. METHODS: In a 17-centre prospective cohort study of infants with severe bronchiolitis, we sequenced their nasal microRNA at hospitalisation. First, we identified differentially expressed microRNAs (DEmiRNAs) associated with the risk of developing asthma by age 6 years. Second, we characterised the DEmiRNAs based on their association with asthma-related clinical features, and expression level by tissue and cell types. Third, we conducted pathway and network analyses by integrating DEmiRNAs and their mRNA targets. Finally, we investigated the association of DEmiRNAs and nasal cytokines. RESULTS: In 575 infants (median age 3 months), we identified 23 DEmiRNAs associated with asthma development (e.g. hsa-miR-29a-3p; false discovery rate (FDR) <0.10), particularly in infants with respiratory syncytial virus infection (FDR for the interaction <0.05). These DEmiRNAs were associated with 16 asthma-related clinical features (FDR <0.05), e.g. infant eczema and corticosteroid use during hospitalisation. In addition, these DEmiRNAs were highly expressed in lung tissue and immune cells (e.g. T-helper cells, neutrophils). Third, DEmiRNAs were negatively correlated with their mRNA targets (e.g. hsa-miR-324-3p/IL13), which were enriched in asthma-related pathways (FDR <0.05), e.g. toll-like receptor, PI3K-Akt and FcɛR signalling pathways, and validated by cytokine data. CONCLUSION: In a multicentre cohort of infants with severe bronchiolitis, we identified nasal miRNAs during illness that were associated with major asthma-related clinical features, immune response, and risk of asthma development.


Assuntos
Asma , Bronquiolite , MicroRNAs , Infecções por Vírus Respiratório Sincicial , Humanos , Lactente , Criança , Estudos Prospectivos , Fosfatidilinositol 3-Quinases , Bronquiolite/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/genética , Citocinas/metabolismo , RNA Mensageiro/genética
4.
Cell Mol Neurobiol ; 35(3): 377-387, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25392236

RESUMO

Multiple sclerosis is a chronic disease of the central nervous system characterized by an autoimmune inflammatory reaction that leads to axonal demyelination and tissue damage. Glucocorticoids, such as prednisolone, are effective in the treatment of multiple sclerosis in large part due to their ability to inhibit pro-inflammatory pathways (e.g., NFκB). However, despite their effectiveness, long-term treatment is limited by adverse side effects. VBP15 is a recently described compound synthesized based on the lazeroid steroidal backbone that shows activity in acute and chronic inflammatory conditions, yet displays a much-reduced side effect profile compared to traditional glucocorticoids. The purpose of this study was to determine the effectiveness of VBP15 in inhibiting inflammation and disease progression in experimental autoimmune encephalomyelitis (EAE), a widely used mouse model of multiple sclerosis. Our data show that VBP15 is effective at reducing both disease onset and severity. In parallel studies, we observed that VBP15 was able to inhibit the production of NFκB-regulated pro-inflammatory transcripts in human macrophages. Furthermore, treatment with prednisolone-but not VBP15-increased expression of genes associated with bone loss and muscle atrophy, suggesting lack of side effects of VBP15. These findings suggest that VBP15 may represent a potentially safer alternative to traditional glucocorticoids in the treatment of multiple sclerosis and other inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Pregnadienodiois/uso terapêutico , Índice de Gravidade de Doença , Animais , Anti-Inflamatórios/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/patologia , Pregnadienodiois/farmacologia , Gravidez , Resultado do Tratamento
6.
Acta Neuropathol ; 127(6): 881-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24297113

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is a highly morbid form of pediatric brainstem glioma. Here, we present the first comprehensive protein, mRNA, and methylation profiles of fresh-frozen DIPG specimens (n = 14), normal brain tissue (n = 10), and other pediatric brain tumors (n = 17). Protein profiling identified 2,305 unique proteins indicating distinct DIPG protein expression patterns compared to other pediatric brain tumors. Western blot and immunohistochemistry validated upregulation of Clusterin (CLU), Elongation Factor 2 (EF2), and Talin-1 (TLN1) in DIPGs studied. Comparisons to mRNA expression profiles generated from tumor and adjacent normal brain tissue indicated two DIPG subgroups, characterized by upregulation of Myc (N-Myc) or Hedgehog (Hh) signaling. We validated upregulation of PTCH, a membrane receptor in the Hh signaling pathway, in a subgroup of DIPG specimens. DNA methylation analysis indicated global hypomethylation of DIPG compared to adjacent normal tissue specimens, with differential methylation of 24 genes involved in Hh and Myc pathways, correlating with protein and mRNA expression patterns. Sequencing analysis showed c.83A>T mutations in the H3F3A or HIST1H3B gene in 77 % of our DIPG cohort. Supervised analysis revealed a unique methylation pattern in mutated specimens compared to the wild-type DIPG samples. This study presents the first comprehensive multidimensional protein, mRNA, and methylation profiling of pediatric brain tumor specimens, detecting the presence of two subgroups within our DIPG cohort. This multidimensional analysis of DIPG provides increased analytical power to more fully explore molecular signatures of DIPGs, with implications for evaluating potential molecular subtypes and biomarker discovery for assessing response to therapy.


Assuntos
Neoplasias do Tronco Encefálico/metabolismo , Encéfalo/metabolismo , Glioma/metabolismo , Adolescente , Adulto , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias do Tronco Encefálico/genética , Criança , Pré-Escolar , Estudos de Coortes , Metilação de DNA , Feminino , Perfilação da Expressão Gênica , Glioma/genética , Histonas/genética , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Proteômica , RNA Mensageiro/metabolismo , Adulto Jovem
8.
Nephrol Dial Transplant ; 29(4): 864-72, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24516231

RESUMO

BACKGROUND: Epigenetic mechanisms may be important in the progression of chronic kidney disease (CKD). METHODS: We studied the genome-wide DNA methylation pattern associated with rapid loss of kidney function using the Infinium HumanMethylation 450 K BeadChip in 40 Chronic Renal Insufficiency (CRIC) study participants (n = 3939) with the highest and lowest rates of decline in estimated glomerular filtration rate. RESULTS: The mean eGFR slope was 2.2 (1.4) and -5.1 (1.2) mL/min/1.73 m(2) in the stable kidney function group and the rapid progression group, respectively. CpG islands in NPHP4, IQSEC1 and TCF3 were hypermethylated to a larger extent in subjects with stable kidney function (P-values of 7.8E-05 to 9.5E-05). These genes are involved in pathways known to promote the epithelial to mesenchymal transition and renal fibrosis. Other CKD-related genes that were differentially methylated are NOS3, NFKBIL2, CLU, NFKBIB, TGFB3 and TGFBI, which are involved in oxidative stress and inflammatory pathways (P-values of 4.5E-03 to 0.046). Pathway analysis using Ingenuity Pathway Analysis showed that gene networks related to cell signaling, carbohydrate metabolism and human behavior are epigenetically regulated in CKD. CONCLUSIONS: Epigenetic modifications may be important in determining the rate of loss of kidney function in patients with established CKD.


Assuntos
Metilação de DNA/genética , Epigênese Genética , Taxa de Filtração Glomerular , Insuficiência Renal Crônica/genética , Adulto , Idoso , Progressão da Doença , Transição Epitelial-Mesenquimal , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Adulto Jovem
9.
Front Immunol ; 15: 1330991, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410509

RESUMO

Bronchiolitis, a viral lower respiratory infection, is the leading cause of infant hospitalization, which is associated with an increased risk for developing asthma later in life. Bronchiolitis can be caused by several respiratory viruses, such as respiratory syncytial virus (RSV), rhinovirus (RV), and others. It can also be caused by a solo infection (e.g., RSV- or RV-only bronchiolitis) or co-infection with two or more viruses. Studies have shown viral etiology-related differences between RSV- and RV-only bronchiolitis in the immune response, human microRNA (miRNA) profiles, and dominance of certain airway microbiome constituents. Here, we identified bacterial small RNAs (sRNAs), the prokaryotic equivalent to eukaryotic miRNAs, that differ between infants of the 35th Multicenter Airway Research Collaboration (MARC-35) cohort with RSV- versus RV-only bronchiolitis. We first derived reference sRNA datasets from cultures of four bacteria known to be associated with bronchiolitis (i.e., Haemophilus influenzae, Moraxella catarrhalis, Moraxella nonliquefaciens, and Streptococcus pneumoniae). Using these reference sRNA datasets, we found several sRNAs associated with RSV- and RV-only bronchiolitis in our human nasal RNA-Seq MARC-35 data. We also determined potential human transcript targets of the bacterial sRNAs and compared expression of the sRNAs between RSV- and RV-only cases. sRNAs are known to downregulate their mRNA target, we found that, compared to those associated with RV-only bronchiolitis, sRNAs associated with RSV-only bronchiolitis may relatively activate the IL-6 and IL-8 pathways and relatively inhibit the IL-17A pathway. These data support that bacteria may be contributing to inflammation differences seen in RSV- and RV-only bronchiolitis, and for the first time indicate that the potential mechanism in doing so may be through bacterial sRNAs.


Assuntos
Bronquiolite , Infecções por Enterovirus , MicroRNAs , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Vírus , Lactente , Humanos , Rhinovirus/genética , RNA Bacteriano , Bronquiolite/genética , Vírus Sincicial Respiratório Humano/genética , Infecções por Vírus Respiratório Sincicial/genética , Imunidade
10.
Nat Commun ; 14(1): 5495, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679381

RESUMO

Bronchiolitis is the most common lower respiratory infection in infants, yet its pathobiology remains unclear. Here we present blood DNA methylation data from 625 infants hospitalized with bronchiolitis in a 17-center prospective study, and associate them with disease severity. We investigate differentially methylated CpGs (DMCs) for disease severity. We characterize the DMCs based on their association with cell and tissues types, biological pathways, and gene expression. Lastly, we also examine the relationships of severity-related DMCs with respiratory and immune traits in independent cohorts. We identify 33 DMCs associated with severity. These DMCs are differentially methylated in blood immune cells. These DMCs are also significantly enriched in multiple tissues (e.g., lung) and cells (e.g., small airway epithelial cells), and biological pathways (e.g., interleukin-1-mediated signaling). Additionally, these DMCs are associated with respiratory and immune traits (e.g., asthma, lung function, IgE levels). Our study suggests the role of DNA methylation in bronchiolitis severity.


Assuntos
Asma , Bronquiolite , Humanos , Lactente , Estudos Prospectivos , Epigenoma , Bronquiolite/genética , Metilação de DNA/genética
11.
Res Sq ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778359

RESUMO

Background: Maternal body size, nutrition, and hyperglycemia contribute to neonatal body size and composition. There is little information on maternal-fetal transmission of messages which influence fetal growth. We analyzed adipocyte-derived small extracellular vesicular (ADsEV) microRNAs in maternal and cord blood to explore their adipogenic potential. Methods: We studied 127 mother-neonate pairs (51 lean and 76 adipose neonates, in 68 NGT and 59 GDM pregnancies). Adiposity refers to the highest tertile (T3) of sum of skinfolds in neonates of normal glucose tolerant (NGT) mothers, lean to the to lowest tertile (T1). ADsEV miRNAs from maternal and cord blood samples were profiled on Agilent 8*60K microarray. Differential expression (DE) of ADsEV miRNAs in adipose vs. lean neonates was studied before and after adjustment for maternal gestational diabetes mellitus (GDM), adiposity, and vitamin B12-folate status. Results: Multiple miRNAs were common in maternal and cord blood and positively correlated. We identified 24 maternal and 5 cord blood miRNAs differentially expressed (p ≤ 0.1) in the adipose neonate group, and 19 and 26 respectively, in the adjusted analyses. Even though DE miRNAs were different in maternal and cord blood, they targeted similar adipogenic pathways (e.g., the forkhead box O (FOXO) family of transcription factors, mitogen-activated protein kinase (MAPK) pathway, transforming growth factor beta (TGF-ß) pathway). Maternal GDM and adiposity were associated with many DE ADsEV miRNAs. Conclusion: Our results suggest that the ADsEV miRNAs in mothers are potential regulators of fetal adiposity. The expression and functionality of miRNAs appears to be influenced by maternal adiposity, hyperglycemia, and micronutrient status during pregnancy.

12.
Biomedicines ; 11(11)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-38001921

RESUMO

Aging is a risk factor for many non-communicable diseases such as cardiovascular and neurodegenerative diseases. Extracellular vesicles and particles (EVP) carry microRNAs that may play a role in age-related diseases and may induce oxidative stress. We hypothesized that aging could impact EVP miRNA and impair redox homeostasis, contributing to chronic age-related diseases. Our aims were to investigate the microRNA profiles of circulating total EVPs from aged and young adult animals and to evaluate the pro- and antioxidant machinery in circulating total EVPs. Plasma from 3- and 21-month-old male Wistar rats were collected, and total EVPs were isolated. MicroRNA isolation and microarray expression analysis were performed on EVPs to determine the predicted regulation of targeted mRNAs. Thirty-one mature microRNAs in circulating EVPs were impacted by age and were predicted to target molecules in canonical pathways directly related to cardiovascular diseases and oxidative status. Circulating total EVPs from aged rats had significantly higher NADPH oxidase levels and myeloperoxidase activity, whereas catalase activity was significantly reduced in EVPs from aged animals. Our data shows that circulating total EVP cargo-specifically microRNAs and oxidative enzymes-are involved in redox imbalance in the aging process and can potentially drive cardiovascular aging and, consequently, cardiac disease.

13.
Front Immunol ; 13: 1111723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36818476

RESUMO

Background: Infants with bronchiolitis are at high risk for developing childhood asthma. While genome-wide association studies suggest common genetic susceptibilities between these conditions, the mechanisms underlying the link remain unclear. Objective: Through integrated genetics-metabolomics analysis in this high-risk population, we sought to identify genetically driven metabolites associated with asthma development and genetic loci associated with both these metabolites and asthma susceptibility. Methods: In a multicenter prospective cohort study of infants hospitalized for bronchiolitis, we profiled the nasopharyngeal metabolome and genotyped the whole genome at hospitalization. We identified asthma-related metabolites from 283 measured compounds and conducted metabolite quantitative trait loci (mtQTL) analyses. We further examined the mtQTL associations by testing shared genetic loci for metabolites and asthma using colocalization analysis and the concordance between the loci and known asthma-susceptibility genes. Results: In 744 infants hospitalized with bronchiolitis, 28 metabolites (e.g., docosapentaenoate [DPA], 1,2-dioleoyl-sn-glycero-3-phosphoglycerol, sphingomyelin) were associated with asthma risk. A total of 349 loci were associated with these metabolites-161 for non-Hispanic white, 120 for non-Hispanic black, and 68 for Hispanics. Of these, there was evidence for 30 shared loci between 16 metabolites and asthma risk (colocalization posterior probability ≥0.5). The significant SNPs within loci were aligned with known asthma-susceptibility genes (e.g., ADORA1, MUC16). Conclusion: The integrated genetics-metabolomics analysis identified genetically driven metabolites during infancy that are associated with asthma development and genetic loci associated with both these metabolites and asthma susceptibility. Identifying these metabolites and genetic loci should advance research into the functional mechanisms of the infant bronchiolitis-childhood asthma link.


Assuntos
Asma , Bronquiolite , Criança , Humanos , Lactente , Estudos Prospectivos , Estudo de Associação Genômica Ampla , Asma/genética , Locos de Características Quantitativas
14.
Front Aging ; 3: 867100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016863

RESUMO

Aging is associated with adipose tissue dysfunction and is recognized as a risk factor for shortened life span. Considering that in vitro findings have shown the involvement of microRNA in extracellular vesicles and particles (EVPs) on senescence, we hypothesized that circulating EVPs derived from adipocytes can be involved in the aging process via their microRNA cargo. We aimed to determine the microRNA profiles of circulating EVPs derived from adipocytes (FABP4+) from aged and young adult animals and to perform in silico prediction of their downstream signaling effects. Plasma was obtained from Wistar rats (3 and 21 months old), and adipocyte-derived EVPs were isolated using the commercially available kit. Fatty acid-binding protein 4 (FABP4) was used for adipocyte-derived EVPs isolation; microRNA isolation and microarray expression analysis were performed. The analysis revealed 728 miRNAs, 32 were differentially between groups (p < 0.05; fold change ≥ |1.1|), of which 15 miRNAs were upregulated and 17 were downregulated in circulating EVPs from aged animals compared to young adults. A conservative filter was applied, and 18 microRNAs had experimentally validated and highly conserved predicted mRNA targets, with a total of 2,228 mRNAs. Canonical pathways, disease and functions, and upstream regulator analyses were performed using IPA-QIAGEN, allowing a global and interconnected evaluation. IPA categories impacted negatively were cell cycle, cellular development, cellular growth and proliferation, and tissue development, while those impacted positively were "digestive system cancer" and "endocrine gland tumor." Interestingly, the upregulated miR-15-5p targets several cyclins, such as CCND1 and CCND2, and miR-24-3p seems to target CDK4 (cyclin-dependent kinase 4); then potentially inhibiting their expression, both miRNAs can induce a negative regulation of cell cycle progression. In contrast, silencing of negative cell cycle checkpoint regulators, such as p21 and p16, can be predicted, which can induce impairment in response to genotoxic stressors. In addition, predicted targets, such as SMAD family members, seem to be involved in the positive control of digestive and endocrine tumors. Taken together, this exploratory study indicates that miRNA signature in circulating adipocyte-derived EVPs may be involved with the double-edged sword of cellular senescence, including irreversible proliferation arrest and tissue-dependent cancer, and seems to be suitable for further validation and confirmatory studies.

15.
Pulm Circ ; 12(4): e12156, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36438452

RESUMO

Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-ß5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-ß5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-ß5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανß5 in vitro partially blocked transforming growth factor (TGF)-ß1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανß5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-ß1. In vivo, blocking of integrin-ανß5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανß5 in lung endothelial survival and migration, but also a partial contribution to TGF-ß1-induced EnMT gene expression. Our results suggest that integrin-ανß5 is required for physiologic function of ECs and lung vascular homeostasis.

16.
Hum Mol Genet ; 18(20): 3795-804, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19602480

RESUMO

Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r(2) = 0.84-0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164-FJ010174.


Assuntos
Processamento Alternativo , Diabetes Mellitus Tipo 2/genética , Especificidade de Órgãos , Fatores de Transcrição TCF/genética , Adolescente , Adulto , Linhagem Celular , Colo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Expressão Gênica , Humanos , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição TCF/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição , Adulto Jovem
17.
Hum Genet ; 129(2): 129-39, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21061022

RESUMO

Converging lines of evidence suggest that AKT1 is a major mediator of the responses to insulin,insulin-like growth factor 1 (IGF1), and glucose. AKT1 also plays a key role in the regulation of both muscle cell hypertrophy and atrophy. We hypothesized that AKT1 variants may play a role in the endophenotypes that makeup metabolic syndrome. We studied a 12-kb region including the first exon of the AKT1 gene for association with metabolic syndrome-related phenotypes in four study populations [FAMUSS cohort (n = 574; age 23.7 ± 5.7 years), Strong Heart Study (SHS) (n = 2,134; age 55.5 ± 7.9 years), Dynamics of Health, Aging and Body Composition (Health ABC) (n = 3,075; age 73.6 ± 2.9 years), and Studies of a Targeted Risk Reduction Intervention through Defined Exercise (STRRIDE)(n = 175; age 40­65 years)]. We identified a three SNP haplotype that we call H1, which represents the ancestral alleles eles at the three loci and H2, which represents the derived alleles at the three loci. In young adult European Americans (FAMUSS), H1 was associated with higher fasting glucose levels in females. In middle age Native Americans (SHS), H1 carriers showed higher fasting insulin and HOMA in males, and higher BMI in females. Inolder African-American and European American subjects(Health ABC) H1 carriers showed a higher incidence of metabolic syndrome. Homozygotes for the H1 haplotype showed about twice the risk of metabolic syndrome in both males and females (p < 0.001). In middle-aged European Americans with insulin resistance (STRRIDE) studied by intravenous glucose tolerance test (IVGTT), H1 carriers showed increased insulin resistance due to the Sg component (p = 0.021). The 12-kb haplotype is a risk factor for metabolic syndrome and insulin resistance that needs to be explored in further populations.


Assuntos
Síndrome Metabólica/genética , Polimorfismo de Nucleotídeo Único , Proteínas Proto-Oncogênicas c-akt/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Feminino , Humanos , Resistência à Insulina , Masculino , Síndrome Metabólica/etnologia , Pessoa de Meia-Idade , Adulto Jovem
18.
Pediatr Res ; 69(6): 538-43, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21297524

RESUMO

Genome-wide association studies (GWASs) have identified polymorphic loci associated with coronary artery disease (CAD) risk factors (i.e. serum lipids) in adult populations (42-69 y). We hypothesized that younger populations would show a greater relative genetic component due to fewer confounding variables. We examined the influence of 20 GWAS loci associated with serum lipids and insulin metabolism, in a university student cohort (n = 548; mean age = 24 y), and replicated statistically associated results in a second study cohort of primary school students (n = 810, mean age = 11.5 y). Nineteen loci showed no relationship with studied risk factors in young adults. However, the ancestral allele of the rs646776 (SORT1) locus was strongly associated with increased LDL (C) in young adults [TT: 97.6 ± 1.0 mg/dL (n = 345) versus CT/CC: 87.3 ± 1.0 mg/dL (n = 203); p = 3 × 10(x6)] and children [TT: 94.0 ± 1.3 mg/dL (n = 551) versus CT/CC: 84.7 ± 1.4 mg/dL (n = 259); p = 4 × 10(x6)]. This locus is responsible for 3.6% of population variance in young adults and 2.5% of population variance in children. The effect size of the SORT1 locus is considerably higher in young populations (2.5-4.1%) compared with older subjects (1%).


Assuntos
LDL-Colesterol/genética , Cromossomos Humanos Par 1/genética , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Adulto , Criança , Diabetes Mellitus Tipo 2/genética , Exercício Físico , Feminino , Genótipo , Humanos , Insulina/metabolismo , Lipídeos/sangue , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Adulto Jovem
19.
Nat Commun ; 12(1): 3601, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127671

RESUMO

Respiratory syncytial virus (RSV) bronchiolitis is not only the leading cause of hospitalization in U.S. infants, but also a major risk factor for asthma development. While emerging evidence suggests clinical heterogeneity within RSV bronchiolitis, little is known about its biologically-distinct endotypes. Here, we integrated clinical, virus, airway microbiome (species-level), transcriptome, and metabolome data of 221 infants hospitalized with RSV bronchiolitis in a multicentre prospective cohort study. We identified four biologically- and clinically-meaningful endotypes: A) clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-intermediate, B) clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-high, C) clinicalseveremicrobiomemixedinflammationIFN-low, and D) clinicalnon-atopicmicrobiomeM.catarrhalisinflammationIL-6. Particularly, compared with endotype A infants, endotype B infants-who are characterized by a high proportion of IgE sensitization and rhinovirus coinfection, S. pneumoniae/M. catarrhalis codominance, and high IFN-α and -γ response-had a significantly higher risk for developing asthma (9% vs. 38%; OR, 6.00: 95%CI, 2.08-21.9; P = 0.002). Our findings provide an evidence base for the early identification of high-risk children during a critical period of airway development.


Assuntos
Asma/complicações , Asma/virologia , Bronquiolite Viral/complicações , Bronquiolite Viral/virologia , Infecções por Vírus Respiratório Sincicial/complicações , Infecções por Vírus Respiratório Sincicial/virologia , Asma/epidemiologia , Feminino , Expressão Gênica , Predisposição Genética para Doença , Hospitalização , Humanos , Lactente , Masculino , Metaboloma , Microbiota , Estudos Prospectivos , Infecções por Vírus Respiratório Sincicial/epidemiologia , Vírus Sincicial Respiratório Humano/genética , Sistema Respiratório , Rhinovirus , Fatores de Risco , Transcriptoma , Estados Unidos/epidemiologia
20.
Hum Genet ; 128(6): 635-45, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20872231

RESUMO

A small 12-kb haplotype upstream of the AKT1 gene has been found to be associated with insulin resistance phenotypes. We sought to define the functional consequences of the three component polymorphic loci (rs1130214, rs10141867, rs33925946) on AKT1 and the upstream ZBTB42 gene. 5' RACE analysis of AKT1 transcripts in human skeletal muscle biopsies showed the predominant promoter to be 2.5 kb upstream of exon 2, and distinct from those promoters previously reported in rat. We then studied the effect of each of the three haplotype polymorphisms in transcriptional reporter assays in muscle, bone, and fat cell culture models, and found that each modulated enhancer and repressor activity are in a cell-specific and differentiation-specific manner. Our results in promoter assays are consistent with the human phenotype data; we found an anabolic effect on muscle and bone with increased mRNA expression of AKT1, and catabolic effect on fat with decreased expression. To test the hypothesis that rs10141867 affects transcription levels of the novel zinc finger protein ZBTB42 in vivo, we developed the allele-specific expression assay using Taqman technology to test for allelic differences within heterozygotes. The allele containing the derived polymorphism (haplotype H2) showed a 1.75-fold increase in expression in human skeletal muscle. Our data show a particularly complex effect of the component polymorphisms of a single haplotype on cells and tissues, suggesting that the coordination of different tissue-specific effects may have driven selection for the H2 haplotype. In light of the recent abundance of SNP association studies, our approach can serve as a method for exploring the biological function of polymorphisms that show significant genotype/phenotype associations.


Assuntos
Glucose/metabolismo , Síndrome Metabólica/genética , Proteínas Proto-Oncogênicas c-akt/genética , Sequência de Bases , Sequência Conservada , Técnicas Genéticas , Haplótipos , Homeostase , Humanos , Dados de Sequência Molecular , Músculo Esquelético
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa