Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35062534

RESUMO

Agriculture is crucial to the economic prosperity and development of India. Plant diseases can have a devastating influence towards food safety and a considerable loss in the production of agricultural products. Disease identification on the plant is essential for long-term agriculture sustainability. Manually monitoring plant diseases is difficult due to time limitations and the diversity of diseases. In the realm of agricultural inputs, automatic characterization of plant diseases is widely required. Based on performance out of all image-processing methods, is better suited for solving this task. This work investigates plant diseases in grapevines. Leaf blight, Black rot, stable, and Black measles are the four types of diseases found in grape plants. Several earlier research proposals using machine learning algorithms were created to detect one or two diseases in grape plant leaves; no one offers a complete detection of all four diseases. The photos are taken from the plant village dataset in order to use transfer learning to retrain the EfficientNet B7 deep architecture. Following the transfer learning, the collected features are down-sampled using a Logistic Regression technique. Finally, the most discriminant traits are identified with the highest constant accuracy of 98.7% using state-of-the-art classifiers after 92 epochs. Based on the simulation findings, an appropriate classifier for this application is also suggested. The proposed technique's effectiveness is confirmed by a fair comparison to existing procedures.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Algoritmos , Processamento de Imagem Assistida por Computador , Doenças das Plantas
2.
Artigo em Inglês | MEDLINE | ID: mdl-34831960

RESUMO

COVID-19 declared as a pandemic that has a faster rate of infection and has impacted the lives and the country's economy due to forced lockdowns. Its detection using RT-PCR is required long time and due to which its infection has grown exponentially. This creates havoc for the shortage of testing kits in many countries. This work has proposed a new image processing-based technique for the health care systems named "C19D-Net", to detect "COVID-19" infection from "Chest X-Ray" (XR) images, which can help radiologists to improve their accuracy of detection COVID-19. The proposed system extracts deep learning (DL) features by applying the InceptionV4 architecture and Multiclass SVM classifier to classify and detect COVID-19 infection into four different classes. The dataset of 1900 Chest XR images has been collected from two publicly accessible databases. Images are pre-processed with proper scaling and regular feeding to the proposed model for accuracy attainments. Extensive tests are conducted with the proposed model ("C19D-Net") and it has succeeded to achieve the highest COVID-19 detection accuracy as 96.24% for 4-classes, 95.51% for three-classes, and 98.1% for two-classes. The proposed method has outperformed well in expressions of "precision", "accuracy", "F1-score" and "recall" in comparison with most of the recent previously published methods. As a result, for the present situation of COVID-19, the proposed "C19D-Net" can be employed in places where test kits are in short supply, to help the radiologists to improve their accuracy of detection of COVID-19 patients through XR-Images.


Assuntos
COVID-19 , Aprendizado Profundo , Controle de Doenças Transmissíveis , Humanos , Redes Neurais de Computação , SARS-CoV-2 , Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa