Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 148(3): 665-674, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36625279

RESUMO

Fragmentation of therapeutic proteins is a potential critical quality attribute (CQA) that can occur in vivo or during manufacturing or storage due to enzymatic and non-enzymatic degradation pathways, such as hydrolysis, peroxide mediation, and acid/metal catalysis. Characterization of the fragmentation pattern of a therapeutic protein is traditionally accomplished using capillary gel electrophoresis with UV detection under both non-reducing and reducing conditions (nrCGE and rCGE). However, such methods are incompatible with direct coupling to mass spectrometry (MS) due to the use of anionic surfactants, e.g., sodium dodecyl sulfate (SDS). Here, we present a novel method to characterize size-based fragmentation variants of a new biotherapeutic kind using microfluidic ZipChip® capillary zone electrophoresis (mCZE) system interfaced with mass spectrometry (MS) to determine the molecular masses of fragments. A new modality of immuno-oncology therapy, bispecific antigen-binding biotherapeutic, was chosen to investigate its fragmentation pattern using mCZE-MS for the first time, according to our knowledge. Bispecific antigen-binding biotherapeutic samples from different stages of downstream column purification and forced degradation conditions were analyzed. The results were cross-validated with denaturing size-exclusion chromatography-mass spectrometry and conventional rSDS-CGE. In this study, we demonstrated that mCZE-MS could separate and characterize 12-40 kDa bispecific antigen-binding biotherapeutic fragments rapidly (within ≤12 minutes), with higher resolution and better sensitivity than traditional LC-MS methods.


Assuntos
Anticorpos Monoclonais , Microfluídica , Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Cromatografia em Gel , Eletroforese Capilar/métodos
2.
Bioconjug Chem ; 24(12): 2025-35, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24161263

RESUMO

The cation-independent mannose 6-phosphate receptor (CI-MPR) plays a critical role in intracellular transport of lysosomal enzymes as well as the uptake of recombinant proteins. To define the minimal glycan structure determinants necessary for receptor binding and cellular uptake, we synthesized a series of glycans containing mono-, di-, tri-, tetra-, and hexamannoses terminated with either one or two phosphates for conjugating to a model protein, recombinant human acid α-glucosidase. A high affinity interaction with the CI-MPR can be achieved for the enzyme conjugated to a dimannose glycan with a single phosphate. However, tightest binding to a CI-MPR affinity column was observed with a hexamannose structure containing two phosphates. Moreover, maximal cellular uptake and a 5-fold improvement in in vivo potency were achieved when the bisphosphorylated hexamannose glycan is conjugated to the protein by a ß linker. Nevertheless, even a monophosphorylated dimannose glycan conjugate showed stronger binding to the receptor affinity column, higher cellular uptake, and significantly greater in vivo efficacy compared to the unconjugated protein which contains a low level of high affinity glycan structure. These results demonstrate that the phosphorylated dimannose moiety appears to be the minimal structure determinant for enhanced CI-MPR binding and that the orientation of the glycan is critical for maximum receptor interaction. In summary, we have improved the understanding of the mechanism of CI-MPR binding and developed a simple alternative for CI-MPR targeting.


Assuntos
Polissacarídeos/química , Receptor IGF Tipo 2/metabolismo , Proteínas Recombinantes/metabolismo , alfa-Glucosidases/metabolismo , Animais , Humanos , Espaço Intracelular/metabolismo , Manose/química , Mioblastos/citologia , Polissacarídeos/metabolismo , Ligação Proteica , Transporte Proteico , Ratos
3.
Bioconjug Chem ; 22(4): 741-51, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21417264

RESUMO

Engineering proteins for selective tissue targeting can improve therapeutic efficacy and reduce undesired side effects. The relatively high dose of recombinant human acid α-glucosidase (rhGAA) required for enzyme replacement therapy of Pompe disease may be attributed to less than optimal muscle uptake via the cation-independent mannose 6-phosphate receptor (CI-MPR). To improve muscle targeting, Zhu et al. (1) conjugated periodate oxidized rhGAA with bis mannose 6-phosphate bearing synthetic glycans and achieved 5-fold greater potency in a murine Pompe efficacy model. In the current study, we systematically evaluated multiple strategies for conjugation based on a structural homology model of GAA. Glycan derivatives containing succinimide, hydrazide, and aminooxy linkers targeting free cysteine, lysines, and N-linked glycosylation sites on rhGAA were prepared and evaluated in vitro and in vivo. A novel conjugation method using enzymatic oxidation was developed to eliminate side oxidation of methionine. Conjugates derived from periodate oxidized rhGAA still displayed the greatest potency in the murine Pompe model. The efficiency of conjugation and its effect on catalytic activity were consistent with predictions based on the structural model and supported its use in guiding selection of appropriate chemistries.


Assuntos
Polissacarídeos/química , Proteínas Recombinantes/metabolismo , alfa-Glucosidases/metabolismo , Animais , Biocatálise , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Modelos Moleculares , Estrutura Molecular , Ácido N-Acetilneuramínico/química , Oxirredução , Polissacarídeos/administração & dosagem , Polissacarídeos/metabolismo , Engenharia de Proteínas , Proteínas Recombinantes/química , alfa-Glucosidases/administração & dosagem , alfa-Glucosidases/química
4.
Biotechnol Prog ; 36(4): e2973, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31991523

RESUMO

Bispecific protein scaffolds can be more complex than traditional monoclonal antibodies (MAbs) because two different sites/domains for epitope binding are needed. Because of this increased molecular complexity, bispecific molecules are difficult to express and can be more prone to physical and chemical degradation compared to MAbs, leading to higher levels of protein aggregates, clipped species, or modified residues in cell culture. In this study, we investigated cell culture performance for the production of three types of bispecific molecules developed at Amgen. In particular, we cultured a total of six CHO cell lines in both an approximately 12-day fed-batch process and an approximately 40-day high-density perfusion process. Harvested cell culture fluid from each process was purified and analyzed for product quality attributes including aggregate levels, clipped species, charge variants, individual amino acid modifications and host cell protein (HCP) content. Our studies showed that in average, the intensified perfusion process increased 15-fold the integrated viable cell density and the total harvested product (and fivefold the daily volumetric productivity) compared to fed-batch. Furthermore, bispecific product quality improved in perfusion culture (as analyzed in affinity-capture pools) with reduction in levels of aggregates (up to 72% decrease), clipped species (up to 75% decrease), acidic variants (up to 76% decrease), deamidated/isomerized species in complementarity-determining regions, and HCP (up to 84% decrease). In summary, the intensified perfusion process exhibited better productivity and product quality, highlighting the potential to use it as part of a continuous manufacturing process for bispecific scaffolds.


Assuntos
Anticorpos Biespecíficos/biossíntese , Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Epitopos/genética , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Técnicas de Cultura Celular por Lotes , Células CHO , Cricetinae , Cricetulus , Epitopos/imunologia , Perfusão/métodos
5.
Thyroid ; 13(12): 1091-101, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14751029

RESUMO

Posttranslational modification can influence the biologic activity of recombinant proteins. The effects of beta-subunit C-terminal truncation, oligosaccharide heterogeneity, and chemical oxidation on the in vitro activity of recombinant human thyroid-stimulating hormone (rhTSH) were investigated. beta-Subunit C-terminal truncation up to residue 113 did not effect the in vitro activity of the hormone. The relationship between the heterogeneity of oligosaccharide structures on rhTSH and specific activity of the glycoprotein hormone was also examined. Oligosaccharide profiles were generated for preparations of rhTSH containing similar sialic acid levels. A weak correlation was observed between relative levels of monosialylated biantennary, bisialylated biantennary, and trisialylated triantennary oligosaccharide species and in vitro activity of the recombinant hormone (p < 0.05). To examine the effect of chemically induced methionine oxidation on the activity of rhTSH, the hormone was treated with tert-butyl hydroperoxide and then characterized. Using peptide mapping and mass spectrometry, the degree of oxidation of the five methionine residues within rhTSH was measured. Met-71 in the alpha-subunit was the most susceptible to oxidation whereas Met-9 in the beta-subunit was the most resistant. Also, after tert-butyl hydroperoxide treatment, levels of oxidation of Met-32 in the beta-subunit, and Met-29 and Met-47 in the alpha-subunit were less than half of that observed for Met-71. The in vitro activity of rhTSH initially declined with increasing oxidation; however, the loss in activity plateaued at approximately 50% of the control sample activity. In summary, despite the possible effects that posttranslational modifications may have on the bioactivity of a protein, a limited degree of variation in bioactivity was observed for the rhTSH preparations described in this study.


Assuntos
Processamento de Proteína Pós-Traducional , Tireotropina/metabolismo , Cromatografia Líquida , Dicroísmo Circular , Fluorescência , Humanos , Espectrometria de Massas , Oligossacarídeos/análise , Oxirredução , Mapeamento de Peptídeos , Proteínas Recombinantes/química , Proteínas Recombinantes/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Tireotropina/química , Tireotropina/efeitos dos fármacos , terc-Butil Hidroperóxido/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa