Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428396

RESUMO

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Assuntos
Infecções por HIV , Inflamassomos , Síndrome de Imunodeficiência Adquirida dos Símios , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Progressão da Doença , Infecções por HIV/patologia , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Vírus da Imunodeficiência Símia/fisiologia , Viremia , HIV/fisiologia
2.
Nature ; 625(7996): 735-742, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38030727

RESUMO

Noncoding DNA is central to our understanding of human gene regulation and complex diseases1,2, and measuring the evolutionary sequence constraint can establish the functional relevance of putative regulatory elements in the human genome3-9. Identifying the genomic elements that have become constrained specifically in primates has been hampered by the faster evolution of noncoding DNA compared to protein-coding DNA10, the relatively short timescales separating primate species11, and the previously limited availability of whole-genome sequences12. Here we construct a whole-genome alignment of 239 species, representing nearly half of all extant species in the primate order. Using this resource, we identified human regulatory elements that are under selective constraint across primates and other mammals at a 5% false discovery rate. We detected 111,318 DNase I hypersensitivity sites and 267,410 transcription factor binding sites that are constrained specifically in primates but not across other placental mammals and validate their cis-regulatory effects on gene expression. These regulatory elements are enriched for human genetic variants that affect gene expression and complex traits and diseases. Our results highlight the important role of recent evolution in regulatory sequence elements differentiating primates, including humans, from other placental mammals.


Assuntos
Sequência Conservada , Evolução Molecular , Genoma , Primatas , Animais , Feminino , Humanos , Gravidez , Sequência Conservada/genética , Desoxirribonuclease I/metabolismo , DNA/genética , DNA/metabolismo , Genoma/genética , Mamíferos/classificação , Mamíferos/genética , Placenta , Primatas/classificação , Primatas/genética , Sequências Reguladoras de Ácido Nucleico/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo , Proteínas/genética , Regulação da Expressão Gênica/genética
3.
J Immunol ; 212(11): 1754-1765, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639635

RESUMO

Mauritian-origin cynomolgus macaques (MCMs) serve as a powerful nonhuman primate model in biomedical research due to their unique genetic homogeneity, which simplifies experimental designs. Despite their extensive use, a comprehensive understanding of crucial immune-regulating gene families, particularly killer Ig-like receptors (KIR) and NK group 2 (NKG2), has been hindered by the lack of detailed genomic reference assemblies. In this study, we employ advanced long-read sequencing techniques to completely assemble eight KIR and seven NKG2 genomic haplotypes, providing an extensive insight into the structural and allelic diversity of these immunoregulatory gene clusters. Leveraging these genomic resources, we prototype a strategy for genotyping KIR and NKG2 using short-read, whole-exome capture data, illustrating the potential for cost-effective multilocus genotyping at colony scale. These results mark a significant enhancement for biomedical research in MCMs and underscore the feasibility of broad-scale genetic investigations.


Assuntos
Haplótipos , Macaca fascicularis , Receptores KIR , Animais , Receptores KIR/genética , Macaca fascicularis/genética , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Genômica/métodos , Genótipo
5.
Nature ; 553(7686): 77-81, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300007

RESUMO

In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS.


Assuntos
Síndrome da Imunodeficiência Adquirida/genética , Cercocebus atys/genética , Cercocebus atys/virologia , Predisposição Genética para Doença , Genoma/genética , Especificidade de Hospedeiro/genética , Vírus da Imunodeficiência Símia , Síndrome da Imunodeficiência Adquirida/virologia , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Cercocebus atys/imunologia , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Variação Genética , Genômica , HIV/patogenicidade , Humanos , Macaca/virologia , Deleção de Sequência , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Especificidade da Espécie , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Transcriptoma/genética , Sequenciamento Completo do Genoma
6.
BMC Bioinformatics ; 24(1): 23, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670361

RESUMO

BACKGROUND: Recent population studies are ever growing in number of samples to investigate the diversity of a population or species. These studies reveal new polymorphism that lead to important insights into the mechanisms of evolution, but are also important for the interpretation of these variations. Nevertheless, while the full catalog of variations across entire species remains unknown, we can predict which regions harbor additional not yet detected variations and investigate their properties, thereby enhancing the analysis for potentially missed variants. RESULTS: To achieve this we developed SVhound ( https://github.com/lfpaulin/SVhound ), which based on a population level SVs dataset can predict regions that harbor unseen SV alleles. We tested SVhound using subsets of the 1000 genomes project data and showed that its correlation (average correlation of 2800 tests r = 0.7136) is high to the full data set. Next, we utilized SVhound to investigate potentially missed or understudied regions across 1KGP and CCDG. Lastly we also apply SVhound on a small and novel SV call set for rhesus macaque (Macaca mulatta) and discuss the impact and choice of parameters for SVhound. CONCLUSIONS: SVhound is a unique method to identify potential regions that harbor hidden diversity in model and non model organisms and can also be potentially used to ensure high quality of SV call sets.


Assuntos
Variação Estrutural do Genoma , Polimorfismo Genético , Software , Animais , Humanos , Alelos , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Macaca mulatta/genética
7.
Mol Biol Evol ; 39(7)2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35771663

RESUMO

The mutation rate is a fundamental evolutionary parameter with direct and appreciable effects on the health and function of individuals. Here, we examine this important parameter in the domestic cat, a beloved companion animal as well as a valuable biomedical model. We estimate a mutation rate of 0.86 × 10-8 per bp per generation for the domestic cat (at an average parental age of 3.8 years). We find evidence for a significant paternal age effect, with more mutations transmitted by older sires. Our analyses suggest that the cat and the human have accrued similar numbers of mutations in the germline before reaching sexual maturity. The per-generation mutation rate in the cat is 28% lower than what has been observed in humans, but is consistent with the shorter generation time in the cat. Using a model of reproductive longevity, which takes into account differences in the reproductive age and time to sexual maturity, we are able to explain much of the difference in per-generation rates between species. We further apply our reproductive longevity model in a novel analysis of mutation spectra and find that the spectrum for the cat resembles the human mutation spectrum at a younger age of reproduction. Together, these results implicate changes in life-history as a driver of mutation rate evolution between species. As the first direct observation of the paternal age effect outside of rodents and primates, our results also suggest a phenomenon that may be universal among mammals.


Assuntos
Longevidade , Taxa de Mutação , Animais , Gatos/genética , Pré-Escolar , Humanos , Longevidade/genética , Mamíferos , Mutação , Idade Paterna , Reprodução/genética
8.
Genome Res ; 30(6): 826-834, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32461224

RESUMO

Mutation is the ultimate source of all genetic novelty and the cause of heritable genetic disorders. Mutational burden has been linked to complex disease, including neurodevelopmental disorders such as schizophrenia and autism. The rate of mutation is a fundamental genomic parameter and direct estimates of this parameter have been enabled by accurate comparisons of whole-genome sequences between parents and offspring. Studies in humans have revealed that the paternal age at conception explains most of the variation in mutation rate: Each additional year of paternal age in humans leads to approximately 1.5 additional inherited mutations. Here, we present an estimate of the de novo mutation rate in the rhesus macaque (Macaca mulatta) using whole-genome sequence data from 32 individuals in four large pedigrees. We estimated an average mutation rate of 0.58 × 10-8 per base pair per generation (at an average parental age of 7.5 yr), much lower than found in direct estimates from great apes. As in humans, older macaque fathers transmit more mutations to their offspring, increasing the per generation mutation rate by 4.27 × 10-10 per base pair per year. We found that the rate of mutation accumulation after puberty is similar between macaques and humans, but that a smaller number of mutations accumulate before puberty in macaques. We additionally investigated the role of paternal age on offspring sociability, a proxy for normal neurodevelopment, by studying 203 male macaques in large social groups.


Assuntos
Comportamento Animal , Mutação em Linhagem Germinativa , Acúmulo de Mutações , Idade Paterna , Efeitos Tardios da Exposição Pré-Natal/genética , Habilidades Sociais , Fatores Etários , Animais , Feminino , Humanos , Macaca mulatta , Masculino , Taxa de Mutação , Gravidez , Especificidade da Espécie
9.
PLoS Biol ; 18(12): e3000954, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33270638

RESUMO

Our understanding of the evolutionary history of primates is undergoing continual revision due to ongoing genome sequencing efforts. Bolstered by growing fossil evidence, these data have led to increased acceptance of once controversial hypotheses regarding phylogenetic relationships, hybridization and introgression, and the biogeographical history of primate groups. Among these findings is a pattern of recent introgression between species within all major primate groups examined to date, though little is known about introgression deeper in time. To address this and other phylogenetic questions, here, we present new reference genome assemblies for 3 Old World monkey (OWM) species: Colobus angolensis ssp. palliatus (the black and white colobus), Macaca nemestrina (southern pig-tailed macaque), and Mandrillus leucophaeus (the drill). We combine these data with 23 additional primate genomes to estimate both the species tree and individual gene trees using thousands of loci. While our species tree is largely consistent with previous phylogenetic hypotheses, the gene trees reveal high levels of genealogical discordance associated with multiple primate radiations. We use strongly asymmetric patterns of gene tree discordance around specific branches to identify multiple instances of introgression between ancestral primate lineages. In addition, we exploit recent fossil evidence to perform fossil-calibrated molecular dating analyses across the tree. Taken together, our genome-wide data help to resolve multiple contentious sets of relationships among primates, while also providing insight into the biological processes and technical artifacts that led to the disagreements in the first place.


Assuntos
Introgressão Genética/genética , Primatas/genética , Animais , Evolução Biológica , Cercopithecidae/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Fósseis , Fluxo Gênico/genética , Genoma/genética , Modelos Genéticos , Filogenia , Análise de Sequência de DNA/métodos
10.
J Pediatr Gastroenterol Nutr ; 77(3): 354-357, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347142

RESUMO

Non-caseating granulomas may indicate a more aggressive phenotype of Crohn disease (CD). Genetic associations of granulomatous CD (GCD) may help elucidate disease pathogenesis. Whole-exome sequencing was performed on peripheral blood-derived DNA from 17 pediatric patients with GCD and 19 with non-GCD (NGCD), and from an independent validation cohort of 44 GCD and 19 NGCD cases. PLINK (a tool set for whole-genome association and population-based linkage analyses) analysis was used to identify single nucleotide polymorphisms (SNPs) differentiating between groups, and subgroup allele frequencies were also compared to a public genomic database (gnomAD). The Combined Annotation Dependent Depletion scoring tool was used to predict deleteriousness of SNPs. Human leukocyte antigen (HLA) haplotype findings were compared to a control group (n = 8496). PLINK-based analysis between GCD and NGCD groups did not find consistently significant hits. gnomAD control comparisons, however, showed consistent subgroup associations with DGKZ , ESRRA , and GXYLT1 , genes that have been implicated in mammalian granulomatous inflammation. Our findings may guide future research and precision medicine.


Assuntos
Doença de Crohn , Criança , Humanos , Doença de Crohn/complicações , Sequenciamento do Exoma , Predisposição Genética para Doença , Granuloma/genética , Granuloma/patologia , Fenótipo , Receptor ERRalfa Relacionado ao Estrogênio
11.
PLoS Genet ; 16(5): e1008742, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32392208

RESUMO

The rhesus macaque is an abundant species of Old World monkeys and a valuable model organism for biomedical research due to its close phylogenetic relationship to humans. Copy number variation is one of the main sources of genomic diversity within and between species and a widely recognized cause of inter-individual differences in disease risk. However, copy number differences among rhesus macaques and between the human and macaque genomes, as well as the relevance of this diversity to research involving this nonhuman primate, remain understudied. Here we present a high-resolution map of sequence copy number for the rhesus macaque genome constructed from a dataset of 198 individuals. Our results show that about one-eighth of the rhesus macaque reference genome is composed of recently duplicated regions, either copy number variable regions or fixed duplications. Comparison with human genomic copy number maps based on previously published data shows that, despite overall similarities in the genome-wide distribution of these regions, there are specific differences at the chromosome level. Some of these create differences in the copy number profile between human disease genes and their rhesus macaque orthologs. Our results highlight the importance of addressing the number of copies of target genes in the design of experiments and cautions against human-centered assumptions in research conducted with model organisms. Overall, we present a genome-wide copy number map from a large sample of rhesus macaque individuals representing an important novel contribution concerning the evolution of copy number in primate genomes.


Assuntos
Mapeamento Cromossômico , Variações do Número de Cópias de DNA/fisiologia , Duplicação Gênica/fisiologia , Macaca mulatta/genética , Animais , Mapeamento Cromossômico/veterinária , Feminino , Genética Populacional , Genoma , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Humanos , Macaca mulatta/classificação , Masculino , Fases de Leitura Aberta/genética , Filogenia , Análise de Sequência de DNA/veterinária , Especificidade da Espécie
12.
Int J Mol Sci ; 24(13)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37445796

RESUMO

Polycystic ovary syndrome (PCOS) is a common endocrine disorder characterized by hyperandrogenemia of ovarian thecal cell origin, resulting in anovulation/oligo-ovulation and infertility. Our previous studies established that ovarian theca cells isolated and propagated from ovaries of normal ovulatory women and women with PCOS have distinctive molecular and cellular signatures that underlie the increased androgen biosynthesis in PCOS. To evaluate differences between gene expression in single-cells from passaged cultures of theca cells from ovaries of normal ovulatory women and women with PCOS, we performed single-cell RNA sequencing (scRNA-seq). Results from these studies revealed differentially expressed pathways and genes involved in the acquisition of cholesterol, the precursor of steroid hormones, and steroidogenesis. Bulk RNA-seq and microarray studies confirmed the theca cell differential gene expression profiles. The expression profiles appear to be directed largely by increased levels or activity of the transcription factors SREBF1, which regulates genes involved in cholesterol acquisition (LDLR, LIPA, NPC1, CYP11A1, FDX1, and FDXR), and GATA6, which regulates expression of genes encoding steroidogenic enzymes (CYP17A1) in concert with other differentially expressed transcription factors (SP1, NR5A2). This study provides insights into the molecular mechanisms underlying the hyperandrogenemia associated with PCOS and highlights potential targets for molecular diagnosis and therapeutic intervention.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Análise da Expressão Gênica de Célula Única , Hiperandrogenismo/complicações , Hiperandrogenismo/genética , Hiperandrogenismo/metabolismo , Fatores de Transcrição/genética
13.
J Virol ; 95(23): e0088221, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34549979

RESUMO

Human and simian immunodeficiency virus (HIV and SIV) infections establish lifelong reservoirs of cells harboring an integrated proviral genome. Genome editing CRISPR-associated Cas9 nucleases, combined with SIV-specific guiding RNA (gRNA) molecules, inactivate integrated provirus DNA in vitro and in animal models. We generated RNA-guided Cas9 nucleases (RGNu) and nickases (RGNi) targeting conserved SIV regions with no homology in the human or rhesus macaque genome. Assays in cells cotransfected with SIV provirus and plasmids coding for RGNus identified SIV long terminal repeat (LTR), trans-activation response (TAR) element, and ribosome slip site (RSS) regions as the most effective at virus suppression; RGNi targeting these regions inhibited virus production significantly. Multiplex plasmids that coexpressed these three RGNu (Nu3), or six (three pairs) RGNi (Ni6), were more efficient at virus suppression than any combination of individual RGNu and RGNi plasmids. Both Nu3 and Ni6 plasmids were tested in lymphoid cells chronically infected with SIVmac239, and whole-genome sequencing was used to determine on- and off-target mutations. Treatment with these all-in-one plasmids resulted in similar levels of mutations of viral sequences from the cellular genome; Nu3 induced indels at the 3 SIV-specific sites, whereas for Ni6 indels were present at the LTR and TAR sites. Levels of off-target effects detected by two different algorithms were indistinguishable from background mutations. In summary, we demonstrate that Cas9 nickase in association with gRNA pairs can specifically eliminate parts of the integrated provirus DNA; also, we show that careful design of an all-in-one plasmid coding for 3 gRNAs and Cas9 nuclease inhibits SIV production with undetectable off-target mutations, making these tools a desirable prospect for moving into animal studies. IMPORTANCE Our approach to HIV cure, utilizing the translatable SIV/rhesus macaque model system, aims at provirus inactivation and its removal with the least possible off-target side effects. We developed single molecules that delivered either three truncated SIV-specific gRNAs along with Cas9 nuclease or three pairs of SIV-specific gRNAs (six individual gRNAs) along with Cas9 nickase to enhance efficacy of on-target mutagenesis. Whole-genome sequencing demonstrated effective SIV sequence mutation and inactivation and the absence of demonstrable off-target mutations. These results open the possibility to employ Cas9 variants that introduce single-strand DNA breaks to eliminate integrated proviral DNA.


Assuntos
DNA , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Provírus/genética , RNA Guia de Cinetoplastídeos/genética , Vírus da Imunodeficiência Símia/genética , Animais , Sistemas CRISPR-Cas , Endonucleases/genética , Edição de Genes , Células HEK293 , Humanos , Macaca mulatta/metabolismo , Mutagênese , Plasmídeos
14.
Nature ; 518(7539): 317-30, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25693563

RESUMO

The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.


Assuntos
Epigênese Genética/genética , Epigenômica , Genoma Humano/genética , Sequência de Bases , Linhagem da Célula/genética , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/química , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Metilação de DNA , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Especificidade de Órgãos/genética , RNA/genética , Valores de Referência
15.
BMC Evol Biol ; 20(1): 33, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32106815

RESUMO

BACKGROUND: Human chromosome 19 has many unique characteristics including gene density more than double the genome-wide average and 20 large tandemly clustered gene families. It also has the highest GC content of any chromosome, especially outside gene clusters. The high GC content and concomitant high content of hypermutable CpG sites raises the possibility chromosome 19 exhibits higher levels of nucleotide diversity both within and between species, and may possess greater variation in DNA methylation that regulates gene expression. RESULTS: We examined GC and CpG content of chromosome 19 orthologs across representatives of the primate order. In all 12 primate species with suitable genome assemblies, chromosome 19 orthologs have the highest GC content of any chromosome. CpG dinucleotides and CpG islands are also more prevalent in chromosome 19 orthologs than other chromosomes. GC and CpG content are generally higher outside the gene clusters. Intra-species variation based on SNPs in human common dbSNP, rhesus, crab eating macaque, baboon and marmoset datasets is most prevalent on chromosome 19 and its orthologs. Inter-species comparisons based on phyloP conservation show accelerated nucleotide evolution for chromosome 19 promoter flanking and enhancer regions. These same regulatory regions show the highest CpG density of any chromosome suggesting they possess considerable methylome regulatory potential. CONCLUSIONS: The pattern of high GC and CpG content in chromosome 19 orthologs, particularly outside gene clusters, is present from human to mouse lemur representing 74 million years of primate evolution. Much CpG variation exists both within and between primate species with a portion of this variation occurring in regulatory regions.


Assuntos
Cromossomos Humanos Par 19/genética , Sequência Conservada , Primatas/classificação , Primatas/genética , Animais , Composição de Bases , Sequência de Bases , Cromossomos/genética , Sequência Conservada/genética , Ilhas de CpG , Metilação de DNA , Fosfatos de Dinucleosídeos/genética , Genoma , Humanos , Lemur/classificação , Lemur/genética , Camundongos , Família Multigênica , Filogenia , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico/genética
16.
Nature ; 513(7517): 195-201, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25209798

RESUMO

Gibbons are small arboreal apes that display an accelerated rate of evolutionary chromosomal rearrangement and occupy a key node in the primate phylogeny between Old World monkeys and great apes. Here we present the assembly and analysis of a northern white-cheeked gibbon (Nomascus leucogenys) genome. We describe the propensity for a gibbon-specific retrotransposon (LAVA) to insert into chromosome segregation genes and alter transcription by providing a premature termination site, suggesting a possible molecular mechanism for the genome plasticity of the gibbon lineage. We further show that the gibbon genera (Nomascus, Hylobates, Hoolock and Symphalangus) experienced a near-instantaneous radiation ∼5 million years ago, coincident with major geographical changes in southeast Asia that caused cycles of habitat compression and expansion. Finally, we identify signatures of positive selection in genes important for forelimb development (TBX5) and connective tissues (COL1A1) that may have been involved in the adaptation of gibbons to their arboreal habitat.


Assuntos
Genoma/genética , Hylobates/classificação , Hylobates/genética , Cariótipo , Filogenia , Animais , Evolução Molecular , Hominidae/classificação , Hominidae/genética , Humanos , Dados de Sequência Molecular , Retroelementos/genética , Seleção Genética , Terminação da Transcrição Genética
17.
Am J Hum Genet ; 98(5): 898-908, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27132594

RESUMO

Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.


Assuntos
Fertilidade/genética , Variação Genética/genética , Síndrome do Ovário Policístico/genética , Gêmeos Dizigóticos/genética , Ansiedade/genética , Estudos de Casos e Controles , Depressão/genética , Família , Feminino , Hormônio Foliculoestimulante/sangue , Estudo de Associação Genômica Ampla , Humanos , Estudos Longitudinais , Masculino , Mães , Síndrome do Ovário Policístico/sangue , Gravidez
18.
Immunogenetics ; 71(8-9): 531-544, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31321455

RESUMO

Indian rhesus macaque major histocompatibility complex (MHC) variation can influence the outcomes of transplantation and infectious disease studies. Frequently, rhesus macaques are MHC genotyped to identify variants that could account for unexpected results. Since the MHC is only one region in the genome where variation could impact experimental outcomes, strategies for simultaneously profiling variation in the macaque MHC and the remainder of the protein coding genome would be useful. Here we determine MHC class I and class II genotypes using target-capture probes enriched for MHC sequences, a method we term macaque exome sequence (MES) genotyping. For a cohort of 27 Indian rhesus macaques, we describe two methods for obtaining MHC genotypes from MES data and demonstrate that the MHC class I and class II genotyping results obtained with these methods are 98.1% and 98.7% concordant, respectively, with expected MHC genotypes. In contrast, conventional MHC genotyping results obtained by deep sequencing of short multiplex PCR amplicons were only 92.6% concordant with expectations for this cohort.


Assuntos
Exoma/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Macaca mulatta/genética , Polimorfismo Genético , Animais , Haplótipos , Sequenciamento do Exoma
19.
Genome Res ; 26(12): 1651-1662, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27934697

RESUMO

Rhesus macaques (Macaca mulatta) are the most widely used nonhuman primate in biomedical research, have the largest natural geographic distribution of any nonhuman primate, and have been the focus of much evolutionary and behavioral investigation. Consequently, rhesus macaques are one of the most thoroughly studied nonhuman primate species. However, little is known about genome-wide genetic variation in this species. A detailed understanding of extant genomic variation among rhesus macaques has implications for the use of this species as a model for studies of human health and disease, as well as for evolutionary population genomics. Whole-genome sequencing analysis of 133 rhesus macaques revealed more than 43.7 million single-nucleotide variants, including thousands predicted to alter protein sequences, transcript splicing, and transcription factor binding sites. Rhesus macaques exhibit 2.5-fold higher overall nucleotide diversity and slightly elevated putative functional variation compared with humans. This functional variation in macaques provides opportunities for analyses of coding and noncoding variation, and its cellular consequences. Despite modestly higher levels of nonsynonymous variation in the macaques, the estimated distribution of fitness effects and the ratio of nonsynonymous to synonymous variants suggest that purifying selection has had stronger effects in rhesus macaques than in humans. Demographic reconstructions indicate this species has experienced a consistently large but fluctuating population size. Overall, the results presented here provide new insights into the population genomics of nonhuman primates and expand genomic information directly relevant to primate models of human disease.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Macaca mulatta/genética , Sequenciamento Completo do Genoma/métodos , Animais , Evolução Molecular , Feminino , Aptidão Genética , Macaca mulatta/classificação , Modelos Animais , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
20.
PLoS Genet ; 11(12): e1005686, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26641089

RESUMO

Many loci in the human genome harbor complex genomic structures that can result in susceptibility to genomic rearrangements leading to various genomic disorders. Nephronophthisis 1 (NPHP1, MIM# 256100) is an autosomal recessive disorder that can be caused by defects of NPHP1; the gene maps within the human 2q13 region where low copy repeats (LCRs) are abundant. Loss of function of NPHP1 is responsible for approximately 85% of the NPHP1 cases-about 80% of such individuals carry a large recurrent homozygous NPHP1 deletion that occurs via nonallelic homologous recombination (NAHR) between two flanking directly oriented ~45 kb LCRs. Published data revealed a non-pathogenic inversion polymorphism involving the NPHP1 gene flanked by two inverted ~358 kb LCRs. Using optical mapping and array-comparative genomic hybridization, we identified three potential novel structural variant (SV) haplotypes at the NPHP1 locus that may protect a haploid genome from the NPHP1 deletion. Inter-species comparative genomic analyses among primate genomes revealed massive genomic changes during evolution. The aggregated data suggest that dynamic genomic rearrangements occurred historically within the NPHP1 locus and generated SV haplotypes observed in the human population today, which may confer differential susceptibility to genomic instability and the NPHP1 deletion within a personal genome. Our study documents diverse SV haplotypes at a complex LCR-laden human genomic region. Comparative analyses provide a model for how this complex region arose during primate evolution, and studies among humans suggest that intra-species polymorphism may potentially modulate an individual's susceptibility to acquiring disease-associated alleles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Evolução Molecular , Genoma Humano , Doenças Renais Císticas/congênito , Proteínas de Membrana/genética , Alelos , Animais , Hibridização Genômica Comparativa , Proteínas do Citoesqueleto , Dosagem de Genes , Rearranjo Gênico , Variação Estrutural do Genoma , Haplótipos , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Primatas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa