Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Vis Exp ; (206)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682904

RESUMO

The study of behavioral responses to visual stimuli is a key component of understanding visual system function. One notable response is the optokinetic reflex (OKR), a highly conserved innate behavior necessary for image stabilization on the retina. The OKR provides a robust readout of image tracking ability and has been extensively studied to understand visual system circuitry and function in animals from different genetic backgrounds. The OKR consists of two phases: a slow tracking phase as the eye follows a stimulus to the edge of the visual plane and a compensatory fast phase saccade that resets the position of the eye in the orbit. Previous methods of tracking gain quantification, although reliable, are labor intensive and can be subjective or arbitrarily derived. To obtain more rapid and reproducible quantification of eye tracking ability, we have developed a novel semi-automated analysis program, PyOKR, that allows for quantification of two-dimensional eye tracking motion in response to any directional stimulus, in addition to being adaptable to any type of video-oculography equipment. This method provides automated filtering, selection of slow tracking phases, modeling of vertical and horizontal eye vectors, quantification of eye movement gains relative to stimulus speed, and organization of resultant data into a usable spreadsheet for statistical and graphical comparisons. This quantitative and streamlined analysis pipeline, readily accessible via PyPI import, provides a fast and direct measurement of OKR responses, thereby facilitating the study of visual behavioral responses.


Assuntos
Tecnologia de Rastreamento Ocular , Animais , Nistagmo Optocinético/fisiologia , Movimentos Oculares/fisiologia
2.
Elife ; 122023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930180

RESUMO

Across species, the optokinetic reflex (OKR) stabilizes vision during self-motion. OKR occurs when ON direction-selective retinal ganglion cells (oDSGCs) detect slow, global image motion on the retina. How oDSGC activity is integrated centrally to generate behavior remains unknown. Here, we discover mechanisms that contribute to motion encoding in vertically tuned oDSGCs and leverage these findings to empirically define signal transformation between retinal output and vertical OKR behavior. We demonstrate that motion encoding in vertically tuned oDSGCs is contrast-sensitive and asymmetric for oDSGC types that prefer opposite directions. These phenomena arise from the interplay between spike threshold nonlinearities and differences in synaptic input weights, including shifts in the balance of excitation and inhibition. In behaving mice, these neurophysiological observations, along with a central subtraction of oDSGC outputs, accurately predict the trajectories of vertical OKR across stimulus conditions. Thus, asymmetric tuning across competing sensory channels can critically shape behavior.


Assuntos
Nistagmo Optocinético , Retina , Camundongos , Animais , Retina/fisiologia , Células Ganglionares da Retina/fisiologia , Reflexo , Visão Ocular , Estimulação Luminosa
3.
bioRxiv ; 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37577668

RESUMO

The study of murine behavioral responses to visual stimuli is a key component of understanding mammalian visual circuitry. One notable response is the optokinetic reflex (OKR), a highly conserved innate behavior necessary for image stabilization on the retina. The OKR provides a robust readout of image tracking ability and has been extensively studied to understand the logic of visual system circuitry and function in mice from different genetic backgrounds. The OKR consists of two phases: a slow tracking phase as the eye follows a stimulus to the edge of the visual plane, and a compensatory fast phase saccade that maintains the image within the visual field. Assessment of the OKR has previously relied on counting individual compensatory eye saccades to estimate tracking speed. To obtain a more direct quantification of tracking ability, we have developed a novel, semi-automated analysis program that allows for rapid and reproducible quantification of unidirectional tracking gains, in addition to being adaptable to any video-oculography equipment. Our analysis program allows for the selection of slow tracking phases, modeling of the vertical and horizontal eye vectors, quantification of eye movement relative to the stimulus, and organization of resultant data into a usable spreadsheet for statistical and graphical comparisons. This quantitative and streamlined analysis pipeline provides a faster and more direct measurement of OKR responses, thereby facilitating further study of visual behavior responses. SUMMARY: We describe here a semi-automated quantitative analysis method that directly measures eye tracking resulting from murine visual system responses to two-dimensional image motion. A Python-based user interface and analysis algorithm allows for higher throughput and more quantitative measurements of eye tracking parameters than previous methods.

4.
Cell Rep ; 36(5): 109463, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34348156

RESUMO

Specificity and timing of synapse disassembly in the CNS are essential to learning how individual circuits react to neurodegeneration of the postsynaptic neuron. In sensory systems such as the mammalian retina, synaptic connections of second-order neurons are known to remodel and reconnect in the face of sensory cell loss. Here we analyzed whether degenerating third-order neurons can remodel their local presynaptic connectivity. We injured adult retinal ganglion cells by transiently elevating intraocular pressure. We show that loss of presynaptic structures occurs before postsynaptic density proteins and accounts for impaired transmission from presynaptic neurons, despite no evidence of presynaptic cell loss, axon terminal shrinkage, or reduced functional input. Loss of synapses is biased among converging presynaptic neuron types, with preferential loss of the major excitatory cone-driven partner and increased connectivity with rod-driven presynaptic partners, demonstrating that this adult neural circuit is capable of structural plasticity while undergoing neurodegeneration.


Assuntos
Rede Nervosa/patologia , Ferimentos e Lesões/patologia , Animais , Feminino , Pressão Intraocular , Luz , Masculino , Camundongos , Terminações Pré-Sinápticas/patologia , Células Bipolares da Retina/patologia , Células Ganglionares da Retina/patologia , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa