Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Conserv Biol ; 34(4): 1017-1028, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32362060

RESUMO

Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.


Efectos del Tamaño Corporal sobre la Estimación de los Requerimientos de Área de Mamíferos Resumen La cuantificación precisa de los requerimientos de área de una especie es un prerrequisito para que la conservación basada en áreas sea efectiva. Esto comúnmente implica la recolección de datos de rastreo de la especie de interés para después realizar análisis de la distribución local. De manera problemática, la autocorrelación en los datos de rastreo puede resultar en una subestimación grave de las necesidades de espacio. Con base en trabajos previos, formulamos una hipótesis en la que supusimos que la magnitud de la subestimación varía con la masa corporal, una relación que podría tener implicaciones serias para la conservación. Para probar esta hipótesis en mamíferos terrestres, estimamos las áreas de distribución local con las ubicaciones en GPS de 757 individuos de 61 especies de mamíferos distribuidas mundialmente con una masa corporal entre 0.4 y 4,000 kg. Después aplicamos una validación cruzada en bloque para cuantificar el sesgo en estimaciones empíricas de la distribución local. Los requerimientos de área de los mamíferos <10 kg fueron subestimados por una media ∼15% y las especies con una masa ∼100 kg fueron subestimadas en ∼50% en promedio. Por lo tanto, encontramos que la estimación del área estaba sujeta al sesgo inducido por la autocorrelación, el cual era peor para las especies de talla grande. En combinación con el hecho de que el riesgo de extinción incrementa conforme aumenta la masa corporal, el escalamiento alométrico del sesgo que observamos sugiere que la mayoría de las especies amenazadas también tienen la probabilidad de ser aquellas especies con las estimaciones de distribución local menos acertadas. Como corrección, probamos si la reducción de datos o la estimación de la distribución local informada por la autocorrelación minimizan el efecto de escalamiento que tiene la autocorrelación sobre las estimaciones de área. La reducción de datos requirió una pérdida de datos del ∼93% para lograr la independencia estadística con un 95% de confianza y por lo tanto no fue una solución viable. Al contrario, la estimación de la distribución local informada por la autocorrelación resultó en estimaciones constantemente precisas sin importar la masa corporal. Cuando relacionamos la masa corporal con el tamaño de la distribución local, detectamos que la corrección de la autocorrelación resultó en un exponente de escalamiento significativamente >1, lo que significa que el escalamiento de la relación cambió sustancialmente en el extremo superior del espectro de la masa corporal.


Assuntos
Conservação dos Recursos Naturais , Mamíferos , Animais , Tamanho Corporal , Espécies em Perigo de Extinção , Comportamento de Retorno ao Território Vital , Humanos
2.
Proc Biol Sci ; 286(1911): 20191472, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31551061

RESUMO

The distributions of migratory species in the ocean span local, national and international jurisdictions. Across these ecologically interconnected regions, migratory marine species interact with anthropogenic stressors throughout their lives. Migratory connectivity, the geographical linking of individuals and populations throughout their migratory cycles, influences how spatial and temporal dynamics of stressors affect migratory animals and scale up to influence population abundance, distribution and species persistence. Population declines of many migratory marine species have led to calls for connectivity knowledge, especially insights from animal tracking studies, to be more systematically and synthetically incorporated into decision-making. Inclusion of migratory connectivity in the design of conservation and management measures is critical to ensure they are appropriate for the level of risk associated with various degrees of connectivity. Three mechanisms exist to incorporate migratory connectivity into international marine policy which guides conservation implementation: site-selection criteria, network design criteria and policy recommendations. Here, we review the concept of migratory connectivity and its use in international policy, and describe the Migratory Connectivity in the Ocean system, a migratory connectivity evidence-base for the ocean. We propose that without such collaboration focused on migratory connectivity, efforts to effectively conserve these critical species across jurisdictions will have limited effect.


Assuntos
Migração Animal , Conservação dos Recursos Naturais , Política Ambiental , Animais , Ecossistema , Geografia , Oceanos e Mares
3.
Conserv Physiol ; 11(1): coad060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37916041

RESUMO

Arctic ecosystems are changing rapidly. The tundra supports nesting migratory seabirds that spend most of their year over the ocean. Migrations are demanding, but it is unclear how physiological capability may equip organisms to respond to their changing environments. For two migratory seabird species nesting in Alaska, USA, the Arctic tern (n = 10) and the long-tailed jaeger (n = 8), we compared oxidative physiology and aerobic capacity measured during incubation and we recorded individual movement paths using electronic tracking tags. Within species, we hypothesized that individuals with longer-distance migrations would show higher oxidative stress and display better aerobic capacity than shorter-distance migrants. We examined blood parameters relative to subsequent fall migration in jaegers and relative to previous spring migration in terns. We present the first measurements of oxidative stress in these species and the first migratory movements of long-tailed jaegers in the Pacific Ocean. Arctic terns displayed positive correlation of oxidative variables, or better integration than jaegers. Relative to physiological sampling, pre-breeding northward migration data were available for terns and post-breeding southward data were available for jaegers. Terns reached a farther maximum distance from the colony than jaegers (16 199 ± 275 km versus 10 947 ± 950 km) and rate of travel northward (447 ± 41.8 km/day) was positively correlated with hematocrit, but we found no other relationships. In jaegers, there were no relationships between individuals' physiology and southward rate of travel (193 ± 52.3 km/day) or migratory distance. While it is not clear whether the much longer migrations of the terns is related to their better integration, or to another factor, our results spark hypotheses that could be evaluated through a controlled phylogenetic study. Species with better integration may be less susceptible to environmental factors that increase oxidative stress, including thermal challenges or changes in prey distribution as the Arctic climate changes rapidly.

4.
Ecol Evol ; 12(1): e8451, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127008

RESUMO

Polar systems of avian migration remain unpredictable. For seabirds nesting in the Nearctic, it is often difficult to predict which of the world's oceans birds will migrate to after breeding. Here, we report on three related seabird species that migrated across four oceans following sympatric breeding at a central Canadian high Arctic nesting location. Using telemetry, we tracked pomarine jaeger (Stercorarius pomarinus, n = 1) across the Arctic Ocean to the western Pacific Ocean; parasitic jaeger (S. parasiticus, n = 4) to the western Atlantic Ocean, and long-tailed jaeger (S. longicaudus, n = 2) to the eastern Atlantic Ocean and western Indian Ocean. We also report on extensive nomadic movements over ocean during the postbreeding period (19,002 km) and over land and ocean during the prebreeding period (5578 km) by pomarine jaeger, an irruptive species whose full migrations and nomadic behavior have been a mystery. While the small sample sizes in our study limit the ability to make generalizable inferences, our results provide a key input to the knowledge of jaeger migrations. Understanding the routes and migratory divides of birds nesting in the Arctic region has implications for understanding both the glacial refugia of the past and the Anthropocene-driven changes in the future.

5.
Mov Ecol ; 7: 35, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31788314

RESUMO

BACKGROUND: Speed and distance traveled provide quantifiable links between behavior and energetics, and are among the metrics most routinely estimated from animal tracking data. Researchers typically sum over the straight-line displacements (SLDs) between sampled locations to quantify distance traveled, while speed is estimated by dividing these displacements by time. Problematically, this approach is highly sensitive to the measurement scale, with biases subject to the sampling frequency, the tortuosity of the animal's movement, and the amount of measurement error. Compounding the issue of scale-sensitivity, SLD estimates do not come equipped with confidence intervals to quantify their uncertainty. METHODS: To overcome the limitations of SLD estimation, we outline a continuous-time speed and distance (CTSD) estimation method. An inherent property of working in continuous-time is the ability to separate the underlying continuous-time movement process from the discrete-time sampling process, making these models less sensitive to the sampling schedule when estimating parameters. The first step of CTSD is to estimate the device's error parameters to calibrate the measurement error. Once the errors have been calibrated, model selection techniques are employed to identify the best fit continuous-time movement model for the data. A simulation-based approach is then employed to sample from the distribution of trajectories conditional on the data, from which the mean speed estimate and its confidence intervals can be extracted. RESULTS: Using simulated data, we demonstrate how CTSD provides accurate, scale-insensitive estimates with reliable confidence intervals. When applied to empirical GPS data, we found that SLD estimates varied substantially with sampling frequency, whereas CTSD provided relatively consistent estimates, with often dramatic improvements over SLD. CONCLUSIONS: The methods described in this study allow for the computationally efficient, scale-insensitive estimation of speed and distance traveled, without biases due to the sampling frequency, the tortuosity of the animal's movement, or the amount of measurement error. In addition to being robust to the sampling schedule, the point estimates come equipped with confidence intervals, permitting formal statistical inference. All the methods developed in this study are now freely available in the ctmmR package or the ctmmweb point-and-click web based graphical user interface.

6.
Trends Ecol Evol ; 34(5): 459-473, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30879872

RESUMO

There have been efforts around the globe to track individuals of many marine species and assess their movements and distribution, with the putative goal of supporting their conservation and management. Determining whether, and how, tracking data have been successfully applied to address real-world conservation issues is, however, difficult. Here, we compile a broad range of case studies from diverse marine taxa to show how tracking data have helped inform conservation policy and management, including reductions in fisheries bycatch and vessel strikes, and the design and administration of marine protected areas and important habitats. Using these examples, we highlight pathways through which the past and future investment in collecting animal tracking data might be better used to achieve tangible conservation benefits.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Ecossistema
7.
Nat Ecol Evol ; 2(10): 1571-1578, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30177802

RESUMO

During their migrations, marine predators experience varying levels of protection and face many threats as they travel through multiple countries' jurisdictions and across ocean basins. Some populations are declining rapidly. Contributing to such declines is a failure of some international agreements to ensure effective cooperation by the stakeholders responsible for managing species throughout their ranges, including in the high seas, a global commons. Here we use biologging data from marine predators to provide quantitative measures with great potential to inform local, national and international management efforts in the Pacific Ocean. We synthesized a large tracking data set to show how the movements and migratory phenology of 1,648 individuals representing 14 species-from leatherback turtles to white sharks-relate to the geopolitical boundaries of the Pacific Ocean throughout species' annual cycles. Cumulatively, these species visited 86% of Pacific Ocean countries and some spent three-quarters of their annual cycles in the high seas. With our results, we offer answers to questions posed when designing international strategies for managing migratory species.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Cooperação Internacional , Oceanos e Mares , Oceano Pacífico
8.
PLoS One ; 12(6): e0178318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575078

RESUMO

During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.


Assuntos
Comportamento Apetitivo , Aves , Animais , Aves/fisiologia , Cruzamento , Região do Caribe , Ecossistema , Comportamento Alimentar , Feminino , Golfo do México , Masculino , Comportamento de Nidação , Oceanografia , Estações do Ano
9.
PLoS One ; 5(1): e8677, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20090942

RESUMO

BACKGROUND: ARGOS satellite telemetry is one of the most widely used methods to track the movements of free-ranging marine and terrestrial animals and is fundamental to studies of foraging ecology, migratory behavior and habitat-use. ARGOS location estimates do not include complete error estimations, and for many marine organisms, the most commonly acquired locations (Location Class 0, A, B, or Z) are provided with no declared error estimate. METHODOLOGY/PRINCIPAL FINDINGS: We compared the accuracy of ARGOS Locations to those obtained using Fastloc GPS from the same electronic tags on five species of pinnipeds: 9 California sea lions (Zalophus californianus), 4 Galapagos sea lions (Zalophus wollebaeki), 6 Cape fur seals (Arctocephalus pusillus pusillus), 3 Australian fur seals (A. p. doriferus) and 5 northern elephant seals (Mirounga angustirostris). These species encompass a range of marine habitats (highly pelagic vs coastal), diving behaviors (mean dive durations 2-21 min) and range of latitudes (equator to temperate). A total of 7,318 ARGOS positions and 27,046 GPS positions were collected. Of these, 1,105 ARGOS positions were obtained within five minutes of a GPS position and were used for comparison. The 68(th) percentile ARGOS location errors as measured in this study were LC-3 0.49 km, LC-2 1.01 km, LC-1 1.20 km, LC-0 4.18 km, LC-A 6.19 km, LC-B 10.28 km. CONCLUSIONS/SIGNIFICANCE: The ARGOS errors measured here are greater than those provided by ARGOS, but within the range of other studies. The error was non-normally distributed with each LC highly right-skewed. Locations of species that make short duration dives and spend extended periods on the surface (sea lions and fur seals) had less error than species like elephant seals that spend more time underwater and have shorter surface intervals. Supplemental data (S1) are provided allowing the creation of density distributions that can be used in a variety of filtering algorithms to improve the quality of ARGOS tracking data.


Assuntos
Migração Animal , Caniformia/fisiologia , Sistemas de Informação Geográfica , Animais , Caniformia/classificação , Especificidade da Espécie
10.
Conserv Biol ; 20(3): 652-7, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16909547

RESUMO

As the flagship journal of the field, Conservation Biology represents a multidisciplinary, global constituency of conservation professionals--a constituency composed of more than 5200 authors representing 1500 organizations and 89 countries. Using bibliometric records of research published in Conservation Biology, I evaluated trends in authorship of research papers from 1987 to 2005. Authorship diversified and became increasingly collaborative over time. North Americans now compose one-half of primary authorship, down from 75% in the 1990s, and European primary authors contribute a quarter of the journal's contributed research. Forty-five countries were represented in volume 19 of the journal. The top three most-cited authors are Australian. The percentage of single-authored papers declined from 57% in 1987 to 18% in 2005. Collectively, academic institutions contribute the most research to Conservation Biology, although a government agency, the U.S. Department of Agriculture Forest Service, was the single most-productive organization. The maturing of conservation biology as a discipline, the complex geographic and multidisciplinary nature of conservation questions, and the increased ease of communication in a technologically connected world contribute to the increasingly diverse and collaborative Conservation Biology authorship.


Assuntos
Autoria , Publicações Periódicas como Assunto/história , Publicações Periódicas como Assunto/tendências , Bibliometria , Conservação dos Recursos Naturais/história , Conservação dos Recursos Naturais/tendências , História do Século XX , História do Século XXI , Editoração/história , Editoração/tendências
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa