Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 85(2): 204-13, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19664745

RESUMO

Through linkage analysis and candidate gene sequencing, we identified three unrelated families with the autosomal-dominant inheritance of early onset anemia, hypouricosuric hyperuricemia, progressive kidney failure, and mutations resulting either in the deletion (p.Leu16del) or the amino acid exchange (p.Leu16Arg) of a single leucine residue in the signal sequence of renin. Both mutations decrease signal sequence hydrophobicity and are predicted by bioinformatic analyses to damage targeting and cotranslational translocation of preprorenin into the endoplasmic reticulum (ER). Transfection and in vitro studies confirmed that both mutations affect ER translocation and processing of nascent preprorenin, resulting either in reduced (p.Leu16del) or abolished (p.Leu16Arg) prorenin and renin biosynthesis and secretion. Expression of renin and other components of the renin-angiotensin system was decreased accordingly in kidney biopsy specimens from affected individuals. Cells stably expressing the p.Leu16del protein showed activated ER stress, unfolded protein response, and reduced growth rate. It is likely that expression of the mutant proteins has a dominant toxic effect gradually reducing the viability of renin-expressing cells. This alters the intrarenal renin-angiotensin system and the juxtaglomerular apparatus functionality and leads to nephron dropout and progressive kidney failure. Our findings provide insight into the functionality of renin-angiotensin system and stress the importance of renin analysis in families and individuals with early onset hyperuricemia, anemia, and progressive kidney failure.


Assuntos
Anemia/genética , Genes Dominantes , Hiperuricemia/genética , Falência Renal Crônica/genética , Renina/genética , Adolescente , Adulto , Idade de Início , Anemia/metabolismo , Linhagem Celular , Criança , Pré-Escolar , Simulação por Computador , Feminino , Ligação Genética , Humanos , Hiperuricemia/metabolismo , Rim/citologia , Rim/ultraestrutura , Falência Renal Crônica/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Renina/metabolismo , Análise de Sequência de DNA , Adulto Jovem
2.
Blood ; 116(23): 4990-5001, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-20709904

RESUMO

Gray platelet syndrome (GPS) is an inherited bleeding disorder characterized by macrothrombocytopenia and absence of platelet α-granules resulting in typical gray platelets on peripheral smears. GPS is associated with a bleeding tendency, myelofibrosis, and splenomegaly. Reports on GPS are limited to case presentations. The causative gene and underlying pathophysiology are largely unknown. We present the results of molecular genetic analysis of 116 individuals including 25 GPS patients from 14 independent families as well as novel clinical data on the natural history of the disease. The mode of inheritance was autosomal recessive (AR) in 11 and indeterminate in 3 families. Using genome-wide linkage analysis, we mapped the AR-GPS gene to a 9.4-Mb interval on 3p21.1-3p22.1, containing 197 protein-coding genes. Sequencing of 1423 (69%) of the 2075 exons in the interval did not identify the GPS gene. Long-term follow-up data demonstrated the progressive nature of the thrombocytopenia and myelofibrosis of GPS resulting in fatal hemorrhages in some patients. We identified high serum vitamin B(12) as a consistent, novel finding in GPS. Chromosome 3p21.1-3p22.1 has not been previously linked to a platelet disorder; identification of the GPS gene will likely lead to the discovery of novel components of platelet organelle biogenesis. This study is registered at www.clinicaltrials.gov as NCT00069680 and NCT00369421.


Assuntos
Cromossomos Humanos Par 3/genética , Síndrome da Plaqueta Cinza/genética , Síndrome da Plaqueta Cinza/fisiopatologia , Adolescente , Adulto , Plaquetas/ultraestrutura , Separação Celular , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Citometria de Fluxo , Ligação Genética , Estudo de Associação Genômica Ampla , Síndrome da Plaqueta Cinza/sangue , Humanos , Masculino , Repetições de Microssatélites , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Neutrófilos/ultraestrutura , Linhagem , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Vitamina B 12/sangue , Adulto Jovem
3.
Am J Med Genet A ; 158A(4): 732-42, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22383261

RESUMO

Juvenile hyaline fibromatosis (JHF) and infantile systemic hyalinosis (ISH) are rare, autosomal recessive disorders of the connective tissue caused by mutations in the gene encoding the anthrax toxin receptor 2 protein (ANTXR2) located on chromosome 4q21. Characteristically, these conditions present with overlapping clinical features, such as nodules and/or pearly papules, gingival hyperplasia, flexion contractures of the joints, and osteolytic bone defects. The present report describes a pair of sibs and three other JHF/ISH patients whose diagnoses were based on typical clinical manifestations and confirmed by histopathologic analyses and/or molecular analysis. A comparison of ISH and JHF, additional thoughts about new terminology (hyaline fibromatosis syndrome) and a modified grading system are also included.


Assuntos
Doenças do Tecido Conjuntivo/genética , Síndrome da Fibromatose Hialina/genética , Síndrome da Fibromatose Hialina/patologia , Proteínas de Membrana/genética , Criança , Pré-Escolar , Doenças do Tecido Conjuntivo/patologia , Doenças do Tecido Conjuntivo/cirurgia , Feminino , Fibromatose Gengival/genética , Fibromatose Gengival/patologia , Hiperplasia Gengival/genética , Hiperplasia Gengival/patologia , Humanos , Síndrome da Fibromatose Hialina/cirurgia , Masculino , Receptores de Peptídeos , Adulto Jovem
4.
Cells Tissues Organs ; 194(2-4): 279-83, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21597265

RESUMO

Amelogenesis imperfecta (AI) represents hereditary conditions affecting the quality and quantity of enamel. Six genes are known to cause AI (AMELX, ENAM, MMP20, KLK4, FAM83H, and WDR72). Our aim was to determine the distribution of different gene mutations in a large AI population and evaluate phenotype-genotype relationships. Affected and unaffected family members were evaluated clinically and radiographically by one examiner. Genotyping was completed using genomic DNA obtained from blood or saliva. A total of 494 individuals were enrolled, with 430 (224 affected, 202 unaffected, and 4 not definitive) belonging to 71 families with conditions consistent with the diagnosis of AI. Diverse clinical phenotypes were observed (i.e. hypoplastic, hypocalcified, and hypomaturation). Genotyping revealed mutations in all 6 candidate genes. A molecular diagnosis was made in 132 affected individuals (59%) and in 26 of the families (37%). Mutations involved 12 families with FAM83H (46%), 6 families with AMELX (23%), 3 families with ENAM (11%), 2 families with KLK4 and MMP20 (8% for each gene), and 1 family with a WDR72 mutation (4%). Phenotypic variants were associated with allelic FAM83H and AMELX mutations. Two seemingly unrelated families had the same KLK4 mutation. Families affected with AI where candidate gene mutations were not identified could have mutations not identifiable by traditional gene sequencing (e.g. exon deletion) or they could have promoter sequence mutations not evaluated in this study. However, the results suggest that there remain new AI causative genes to be identified.


Assuntos
Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Estudos de Associação Genética , Família , Humanos , Mutação/genética
5.
Am J Med Genet A ; 152A(6): 1474-83, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20503323

RESUMO

Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disease characterized by variable oculocutaneous albinism, immunodeficiency, mild bleeding diathesis, and an accelerated lymphoproliferative state. Abnormal lysosome-related organelle membrane function leads to the accumulation of large intracellular vesicles in several cell types, including granulocytes, melanocytes, and platelets. This report describes a severe case of CHS resulting from paternal heterodisomy of chromosome 1, causing homozygosity for the most distal nonsense mutation (p.E3668X, exon 50) reported to date in the LYST/CHS1 gene. The mutation is located in the WD40 region of the CHS1 protein. The patient's fibroblasts expressed no detectable CHS1. Besides manifesting the classical CHS findings, the patient exhibited hypotonia and global developmental delays, raising concerns about other effects of heterodisomy. An interstitial 747 kb duplication on 6q14.2-6q14.3 was identified in the propositus and paternal samples by comparative genomic hybridization. SNP genotyping revealed no additional whole chromosome or segmental isodisomic regions or other dosage variations near the crossover breakpoints on chromosome 1. Unmasking of a separate autosomal recessive cause of developmental delay, or an additive effect of the paternal heterodisomy, could underlie the severity of the phenotype in this patient.


Assuntos
Aneuploidia , Síndrome de Chediak-Higashi/genética , Cromossomos Humanos Par 1/genética , Síndrome de Chediak-Higashi/patologia , Códon sem Sentido , Éxons/genética , Fibroblastos/patologia , Humanos , Lactente , Lisossomos/patologia , Retina/patologia , Análise de Sequência de DNA
6.
Pediatr Nephrol ; 25(7): 1355-60, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20151160

RESUMO

Mutations in the UMOD gene encoding uromodulin (Tamm-Horsfall glycoprotein) result in the autosomal dominant transmission of progressive renal insufficiency and hypo-uricosuric hyperuricemia leading to gout at an early age. The clinical appearance is characterized by renal insufficiency and gout occurring in the late teenage years, with end-stage kidney disease characteristically developing between 40 and 70 years of age. This report provides a long-term characterization of renal functional decline in three children from one family with a novel UMOD mutation (c.891T>G, p.C297W) who received allopurinol and a low protein diet. While renal functional decline is slow in individuals with UMOD mutations, it may appear early in life and be associated with marked hyperuricemia. Anemia was also noted in this family.


Assuntos
Saúde da Família , Predisposição Genética para Doença , Falência Renal Crônica/genética , Mucoproteínas/genética , Mutação , Adulto , Alopurinol/uso terapêutico , Anemia/genética , Antimetabólitos/uso terapêutico , Criança , Pré-Escolar , Terapia Combinada , Dieta com Restrição de Proteínas , Feminino , Taxa de Filtração Glomerular , Humanos , Hiperuricemia/genética , Hiperuricemia/prevenção & controle , Lactente , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/prevenção & controle , Testes de Função Renal , Masculino , Uromodulina
7.
Am J Med Genet A ; 149A(7): 1392-8, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19530186

RESUMO

Amelogenesis imperfectas (AI) are a group of inherited defects of dental enamel formation that show both clinical and genetic heterogeneity. Seven Turkish families segregating autosomal recessive AI (ARAI) were evaluated for evidence of a genetic etiology of AI for the seven major candidate gene loci (AMBN, AMELX, ENAM, FAM83H, KLK4, MMP20, and TUFT1). Dental and periodontal characteristics of the affected members of these families were also described. The mean scores of DMFS and dfs indices were 9.7 and 9.6, respectively. The mean PPD was 2.2 mm and the percentage of the sites with plaque and BOP were 87.8% and 72.4%, respectively. The exons and intron/exon junctions of the candidate genes were sequenced and no gene mutations were identified in any individuals. These findings support the existence of an additional gene(s) that are etiologic for ARAI in these families.


Assuntos
Amelogênese Imperfeita/genética , Genes Recessivos , Adolescente , Amelogenina/genética , Criança , Pré-Escolar , Análise Mutacional de DNA , Proteínas do Esmalte Dentário/genética , Família , Feminino , Genes Recessivos/fisiologia , Predisposição Genética para Doença , Humanos , Calicreínas/genética , Masculino , Metaloproteinase 20 da Matriz/genética , Turquia
8.
Cells Tissues Organs ; 189(1-4): 224-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18714142

RESUMO

Amelogenesis imperfecta (AI) is caused by AMEL, ENAM, MMP20 and KLK4 gene mutations. Mice lacking expression of the AmelX, Enam and Mmp20 genes have been generated. These mouse models provide tools for understanding enamel formation and AI pathogenesis. This study describes the AI phenotypes and relates them to their mouse model counterparts. Human AI phenotypes were determined in a clinical population of AI families and published cases. Human and murine teeth were evaluated using light and electron microscopy. A total of 463 individuals from 54 families were evaluated and mutations in the AMEL, ENAM and KLK4 genes were identified. The majority of human mutations for genes coding enamel nonproteinase proteins (AMEL and ENAM) resulted in variable hypoplasia ranging from local pitting to a marked, generalized enamel thinning. Specific AMEL mutations were associated with abnormal mineralization and maturation defects. Amel and Enam null murine models displayed marked enamel hypoplasia and a complete loss of prism structure. Human mutations in genes coding for the enamel proteinases (MMP20 and KLK4) cause variable degrees of hypomineralization. The murine Mmp20 null mouse exhibits both hypoplastic and hypomineralized defects. The currently available Amel and Enam mouse models for AI exhibit enamel phenotypes (hypoplastic) that are generally similar to those seen in humans. Mmp20 null mice have a greater degree of hypoplasia than humans with MMP20 mutations. Mice lacking expression of the currently known genes associated with the human AI conditions provide useful models for understanding the pathogenesis of these conditions.


Assuntos
Amelogenina/genética , Proteínas do Esmalte Dentário/genética , Esmalte Dentário/enzimologia , Esmalte Dentário/patologia , Calicreínas/genética , Metaloproteinase 20 da Matriz/genética , Mutação/genética , Animais , Esmalte Dentário/ultraestrutura , Dentição , Humanos , Camundongos , Fenótipo , Pigmentação
9.
Pediatr Dent ; 31(7): 523-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-20108745

RESUMO

Amelogenesis imperfecta is a hereditary disorder that causes defective enamel development in the primary and permanent teeth. Clinical treatment is important to address the esthetic appearance of affected teeth, reduce dentinal sensitivity, preserve tooth structure, and optimize masticatory function. The purpose of this case report was to describe the diagnosis, treatment planning, and dental rehabilitation of a patient with autosomal recessive amelogenesis imperfecta. The patient was followed for 5 years, and evaluation 3 years after restorations revealed no pathology associated with the rehabilitation. The patient's esthetic and functional expectations were satisfied.


Assuntos
Amelogênese Imperfeita/terapia , Reabilitação Bucal/métodos , Amelogênese Imperfeita/genética , Criança , Ligas de Cromo , Resinas Compostas , Consanguinidade , Coroas , Materiais Dentários , Restauração Dentária Permanente , Estética Dentária , Feminino , Seguimentos , Genes Recessivos/genética , Humanos , Planejamento de Assistência ao Paciente , Satisfação do Paciente , Doenças Periodontais/terapia
10.
Mol Genet Genomic Med ; 7(1): e00599, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30786327

RESUMO

To help fill the knowledge gap in human genetics and genomics, an International Summit (IS) in Human Genetics and Genomics was conceived and organized by the National Human Genome Research Institute (NHGRI) of the National Institutes of Health (NIH) as a 5-year initiative, from 2016 to 2020. In its first 3 years, 71 professionals from 34 countries received training.


Assuntos
Congressos como Assunto , Países em Desenvolvimento , Genética Médica/estatística & dados numéricos , Genômica , Genética Médica/economia , Genética Médica/organização & administração
11.
Bone ; 42(1): 162-71, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17950683

RESUMO

A 4 base-pair deletion mutation in the Distal-less 3 (DLX3) gene is etiologic for Tricho-Dento-Osseous syndrome (TDO). A cardinal feature of TDO is an increased thickness and density of bone. We tested the effects of the DLX3 gene mutation responsible for TDO on the osteoblastic differentiation of preosteoblastic MC3T3E1 cells and multipontent mesenchymal C2C12 cells. Differential expression analysis of C2C12 cells transfected with wild type DLX3 or mutant DLX3 was performed and desmin gene expression, an early myoblastic differentiation marker in mesenchymal cells, was evaluated by RT-PCR, western blot analysis, and desmin promoter transcriptional activity. Transfection of wild type DLX3 into MC3T3E1 and C2C12 cells increased alkaline phosphatase-2 activity, mineral deposition, and promoter activities of the osteocalcin and type 1 collagen genes compared to empty vector transfected cells. Transfection of mutant DLX3 into these cells further enhanced alkaline phosphatase activity, mineral deposition, and osteocalcin promoter activities, but did not further enhance type 1 collagen promoter activity. Transfection of mutant DLX3 into C2C12 cells markedly down regulated desmin gene expression, and protein expression of desmin and MyoD, while increasing protein expression of osterix and Runx2. These results demonstrate that the DLX3 deletion mutation associated with TDO enhances mesenchymal cell differentiation to an osteoblastic lineage rather than a myoblastic lineage by changing the fate of mesenchymal cells. This DLX3 mutation also accelerates the differentiation of osteoprogenitor cells to osteoblasts at later stages of osteogenesis.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Deleção de Sequência/genética , Fatores de Transcrição/metabolismo , Animais , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , DNA Complementar/genética , Regulação para Baixo , Genes Homeobox/genética , Proteínas de Homeodomínio/genética , Camundongos , Proteína MyoD/genética , Proteína MyoD/metabolismo , Osteocalcina/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Fatores de Transcrição/genética , Regulação para Cima
12.
Cells Tissues Organs ; 186(1): 70-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17627120

RESUMO

Dentin, the most abundant tissue in teeth, is produced by odontoblasts, which differentiate from mesenchymal cells of the dental papilla. Dentinogenesis is a highly controlled process that results in the conversion of unmineralized predentin to mineralized dentin. By weight, 70% of the dentin matrix is mineralized, while the organic phase accounts for 20% and water constitutes the remaining 10%. Type I collagen is the primary component (>85%) of the organic portion of dentin. The non-collagenous part of the organic matrix is composed of various proteins, with dentin phosphoprotein predominating, accounting for about 50% of the non-collagenous part. Dentin defects are broadly classified into two major types: dentinogenesis imperfectas (DIs, types I-III) and dentin dysplasias (DDs, types I and II). To date, mutations in DSPP have been found to underlie the dentin disorders DI types II and III and DD type II. With the elucidation of the underlying genetic mechanisms has come the realization that the clinical characteristics associated with DSPP mutations appear to represent a continuum of phenotypes. Thus, these disorders should likely be called DSPP-associated dentin defects, with DD type II representing the mild end of the phenotypic spectrum and DI type III representing the severe end.


Assuntos
Displasia da Dentina/genética , Dentina/anormalidades , Dentinogênese Imperfeita/genética , Proteínas da Matriz Extracelular/genética , Peptídeo Hidrolases/genética , Dentina/metabolismo , Dentina/patologia , Displasia da Dentina/classificação , Displasia da Dentina/patologia , Dentinogênese/genética , Dentinogênese Imperfeita/classificação , Dentinogênese Imperfeita/patologia , Expressão Gênica , Genes , Humanos , Mutação
13.
Mol Genet Genomic Med ; 5(4): 307-316, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28717657

RESUMO

Medical genetics and genomic medicine in the United States of America. Part 1: history, demographics, legislation, and burden of disease.

14.
J Periodontol ; 76(12): 2322-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16332247

RESUMO

BACKGROUND: Papillon-Lefèvre Syndrome (PLS) is an autosomal recessive disease characterized by palmoplantar hyperkeratosis and severe periodontitis affecting both primary and secondary dentitions. Cathepsin C (CTSC) gene mutations are etiologic for PLS. The resultant loss of CTSC function is responsible for the severe periodontal destruction seen clinically. METHODS: A 4-year-old female (case 1) and her 10-year-old sister (case 2) presented with palmoplantar skin lesions, tooth mobility, and advanced periodontitis. Based on clinical findings, the cases were diagnosed with PLS. Mutational screening of the CTSC gene was conducted for the cases, and their clinically unaffected parents and brother. Biochemical analysis was performed for CTSC, cathepsin G (CTSG), and elastase activity in neutrophils for all members of the nuclear family. The initial treatment included oral hygiene instruction, scaling and root planing, and systemic amoxicillin-metronidazole therapy. RESULTS: CTSC mutational screening identified a c.415G>A transition mutation. In the homozygous state, this mutation was associated with an almost complete loss of activity of CTSC, CTSG, and elastase. Although monthly visits, including scaling, polishing, and 0.2% chlorhexidine digluconate irrigation were performed to stabilize the periodontal condition, case 1 lost all her primary teeth. In case 2, some of the permanent teeth could be maintained. CONCLUSIONS: This report describes two siblings with a cathepsin C gene mutation that is associated with the inactivity of cathepsin C and several neutrophil serine proteases. The failure of patients to respond to periodontal treatment is discussed in the context of these biological findings.


Assuntos
Doença de Papillon-Lefevre/genética , Adenina , Amoxicilina/administração & dosagem , Antibacterianos/administração & dosagem , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos Locais/uso terapêutico , Catepsina C/genética , Catepsina G , Catepsinas/genética , Criança , Pré-Escolar , Clorexidina/uso terapêutico , Raspagem Dentária , Combinação de Medicamentos , Feminino , Genes Recessivos/genética , Guanina , Humanos , Elastase de Leucócito/genética , Metronidazol/administração & dosagem , Mutação/genética , Doença de Papillon-Lefevre/enzimologia , Aplainamento Radicular , Serina Endopeptidases/genética
15.
Arch Oral Biol ; 50(7): 611-23, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15892947

RESUMO

The amelogenesis imperfectas (AI) are a diverse group of genetic disorders primarily affecting the quality and or quantity of enamel, however, affected individuals often have an open bite malocclusion. Three main AI types are recognized based on the perceived developmental mechanisms involved and the enamel phenotype. The purpose of this investigation was to evaluate the association of the AI enamel defect with craniofacial features characteristic of an open bite malocclusion. The sample consisted of 54 AI affected and 34 unaffected family members from 18 different kindreds. Lateral cephalograms were digitized and measurements evaluated for vertical plane alterations using Z-scores. Forty two percent of AI affected individuals and 12% of unaffected family members had dental or skeletal open bite malocclusions. Skeletal open bite malocclusion was variably expressed in AI affected individuals. The enamel phenotype severity did not necessarily correspond with the presence or severity of open bite malocclussion. Open bite malocclusion occurred in individuals with AI caused by mutations in the AMELX and ENAM genes even though these genes are considered to be predominantly or exclusively expressed in teeth. Affected AI individuals with cephalometric values meeting our criteria of skeletal open bite malocclusion were observed in all three major AI types. The pathophysiological relationship between AI associated enamel defects and open bite malocclusion remains unknown.


Assuntos
Amelogênese Imperfeita/complicações , Mordida Aberta/complicações , Adolescente , Adulto , Idoso , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/patologia , Cefalometria , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Mordida Aberta/genética , Mordida Aberta/patologia , Fenótipo , Fatores de Risco
16.
Mol Genet Genomic Med ; 3(6): 481-2, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26740938

RESUMO

As 2015 draws to a close so too do the many celebrations of the 150th anniversary of Mendel's presentation of his work entitled "Experiments in Plant Hybridization" to the Natural History Society of Brno.

17.
Case Rep Dent ; 2014: 605892, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25587461

RESUMO

Background. The orofaciodigital syndromes (OFDS) are a heterogeneous group of syndromes that affect the face, oral cavity, and the digits. OFDS type IV (OMIM %258860) is rare and characterized by broad nasal root and tip, orbital hypertelorism or telecanthus, micrognathia, hypoplastic mandible, and low-set ears. Oral symptoms may include cleft lip, cleft or highly arched palate, bifid uvula, cleft or hypoplastic maxillary and mandibular alveolar ridge, oral frenula, lingual hamartoma, and absent or hypoplastic epiglottis. Dental anomalies are common and generally include disturbances in the number of teeth. Case Report. This report presents a six-year-old girl, referred with the chief complaint of missing teeth. She was diagnosed as having OFDS type IV based on clinical findings. Her parents reported three deceased children and two fetuses that had the same phenotype. She was the seventh child of consanguineous parents who were first cousins. Conclusion. This is a very rare syndrome. Many reported OFDS type IV cases have consanguineous parents, consistent with an autosomal recessive trait. Manifestation of cleft palate in the healthy sibling may be mild expression of the disorder or an unrelated isolated cleft.

18.
Clin J Am Soc Nephrol ; 9(3): 527-35, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24509297

RESUMO

BACKGROUND AND OBJECTIVES: The genetic cause of medullary cystic kidney disease type 1 was recently identified as a cytosine insertion in the variable number of tandem repeat region of MUC1 encoding mucoprotein-1 (MUC1), a protein that is present in skin, breast, and lung tissue, the gastrointestinal tract, and the distal tubules of the kidney. The purpose of this investigation was to analyze the clinical characteristics of families and individuals with this mutation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Families with autosomal dominant interstitial kidney disease were referred for genetic analysis over a 14-year period. Families without UMOD or REN mutations prospectively underwent genotyping for the presence of the MUC1 mutation. Clinical characteristics were retrospectively evaluated in individuals with the MUC1 mutation and historically affected individuals (persons who were both related to genetically affected individuals in such a way that ensured that they could be genetically affected and had a history of CKD stage IV or kidney failure resulting in death, dialysis, or transplantation). RESULTS: Twenty-four families were identified with the MUC1 mutation. Of 186 family members undergoing MUC1 mutational analysis, the mutation was identified in 95 individuals, 91 individuals did not have the mutation, and111 individuals were identified as historically affected. Individuals with the MUC1 mutation suffered from chronic kidney failure with a widely variable age of onset of end stage kidney disease ranging from 16 to >80 years. Urinalyses revealed minimal protein and no blood. Ultrasounds of 35 individuals showed no medullary cysts. There were no clinical manifestations of the MUC1 mutation detected in the breasts, skin, respiratory system, or gastrointestinal tract. CONCLUSION: MUC1 mutation results in progressive chronic kidney failure with a bland urinary sediment. The age of onset of end stage kidney disease is highly variable, suggesting that gene-gene or gene-environment interactions contribute to phenotypic variability.


Assuntos
Mucina-1/genética , Mutação , Rim Policístico Autossômico Dominante/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Análise Mutacional de DNA , Progressão da Doença , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Humanos , Rim/fisiopatologia , Falência Renal Crônica/genética , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Rim Policístico Autossômico Dominante/complicações , Rim Policístico Autossômico Dominante/diagnóstico , Rim Policístico Autossômico Dominante/fisiopatologia , Sistema de Registros , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores de Tempo , Adulto Jovem
19.
JIMD Rep ; 10: 33-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23430797

RESUMO

Cobalamin C disease (cblC), a form of combined methylmalonic acidemia and hyperhomocysteinemia caused by mutations in the MMACHC gene, may be the most common inborn error of intracellular cobalamin metabolism. The clinical manifestations of cblC disease are diverse and range from intrauterine growth retardation to adult onset neurological disease. The occurrence of structural heart defects appears to be increased in cblC patients and may be related to the function of the MMACHC enzyme during cardiac embryogenesis, a concept supported by the observation that Mmachc is expressed in the bulbis cordis of the developing mouse heart. Here we report an infant who presented with hydrops fetalis, ventricular dysfunction, and echocardiographic evidence of LVNC, a rare congenital cardiomyopathy. Metabolic evaluations, complementation studies, and mutation analysis confirmed the diagnosis of cblC disease. These findings highlight an intrauterine cardiac phenotype that can be displayed in cblC disease in association with nonimmune hydrops.

20.
Nat Genet ; 45(3): 299-303, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23396133

RESUMO

Although genetic lesions responsible for some mendelian disorders can be rapidly discovered through massively parallel sequencing of whole genomes or exomes, not all diseases readily yield to such efforts. We describe the illustrative case of the simple mendelian disorder medullary cystic kidney disease type 1 (MCKD1), mapped more than a decade ago to a 2-Mb region on chromosome 1. Ultimately, only by cloning, capillary sequencing and de novo assembly did we find that each of six families with MCKD1 harbors an equivalent but apparently independently arising mutation in sequence markedly under-represented in massively parallel sequencing data: the insertion of a single cytosine in one copy (but a different copy in each family) of the repeat unit comprising the extremely long (∼1.5-5 kb), GC-rich (>80%) coding variable-number tandem repeat (VNTR) sequence in the MUC1 gene encoding mucin 1. These results provide a cautionary tale about the challenges in identifying the genes responsible for mendelian, let alone more complex, disorders through massively parallel sequencing.


Assuntos
Repetições Minissatélites/genética , Mucina-1/genética , Mutação , Rim Policístico Autossômico Dominante , Citosina/metabolismo , Feminino , Ligação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mucina-1/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa