Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Appl Microbiol ; 133(6): 3768-3776, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36106419

RESUMO

AIMS: We compared the bacterial endophytic communities of three genetically different almond cultivars that were all grafted on the same type of rootstock, growing side by side within a commercial orchard. METHODS AND RESULTS: We examined the diversity of leaf bacterial endophytes using cultivation-independent techniques and assessed the relative abundance of bacterial families. Two of these three cultivars were dominated by Pseudomonadaceae, while the bacterial composition of the third cultivar consisted mainly of Streptococcaceae. CONCLUSIONS: The experimental set up allowed us to analyse the impact of the shoot cultivar on endophytes, minimizing the influence of rootstock, biogeography, and cultivation status. Our data suggest that the shoot cultivar can shape the leaf endophytic community composition of almond trees. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results suggest that the shoot cultivar controls the composition of the foliar bacterial endophytic community of almonds. Overall, our results could provide a first step to develop strategies for a more sustainable almond agriculture.


Assuntos
Endófitos , Microbiota , Prunus dulcis , Bactérias/genética , Endófitos/genética , Microbiota/genética , Folhas de Planta/microbiologia , Prunus dulcis/microbiologia
2.
Proc Natl Acad Sci U S A ; 116(14): 6891-6896, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877251

RESUMO

Belowground organisms play critical roles in maintaining multiple ecosystem processes, including plant productivity, decomposition, and nutrient cycling. Despite their importance, however, we have a limited understanding of how and why belowground biodiversity (bacteria, fungi, protists, and invertebrates) may change as soils develop over centuries to millennia (pedogenesis). Moreover, it is unclear whether belowground biodiversity changes during pedogenesis are similar to the patterns observed for aboveground plant diversity. Here we evaluated the roles of resource availability, nutrient stoichiometry, and soil abiotic factors in driving belowground biodiversity across 16 soil chronosequences (from centuries to millennia) spanning a wide range of globally distributed ecosystem types. Changes in belowground biodiversity during pedogenesis followed two main patterns. In lower-productivity ecosystems (i.e., drier and colder), increases in belowground biodiversity tracked increases in plant cover. In more productive ecosystems (i.e., wetter and warmer), increased acidification during pedogenesis was associated with declines in belowground biodiversity. Changes in the diversity of bacteria, fungi, protists, and invertebrates with pedogenesis were strongly and positively correlated worldwide, highlighting that belowground biodiversity shares similar ecological drivers as soils and ecosystems develop. In general, temporal changes in aboveground plant diversity and belowground biodiversity were not correlated, challenging the common perception that belowground biodiversity should follow similar patterns to those of plant diversity during ecosystem development. Taken together, our findings provide evidence that ecological patterns in belowground biodiversity are predictable across major globally distributed ecosystem types and suggest that shifts in plant cover and soil acidification during ecosystem development are associated with changes in belowground biodiversity over centuries to millennia.


Assuntos
Biodiversidade , Modelos Biológicos
3.
Mol Ecol ; 29(4): 752-761, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31697860

RESUMO

Unlike plants and vertebrates, the ecological preferences, and potential vulnerabilities of soil invertebrates to environmental change, remain poorly understood in terrestrial ecosystems globally. We conducted a cross-biome survey including 83 locations across six continents to advance our understanding of the ecological preferences and vulnerabilities of the diversity of dominant and functionally important soil invertebrate taxa, including nematodes, arachnids and rotifers. The diversity of invertebrates was analyzed through amplicon sequencing. Vegetation and climate drove the diversity and dominant taxa of soil invertebrates. Our results suggest that declines in forest cover and plant diversity, and reductions in plant production associated with increases in aridity, can result in reductions of the diversity of soil invertebrates in a drier and more managed world. We further developed global atlases of the diversity of these important soil invertebrates, which were cross-validated using an independent database. Our study advances the current knowledge of the ecological preferences and vulnerabilities of the diversity and presence of functionally important soil invertebrates in soils from across the globe. This information is fundamental for improving and prioritizing conservation efforts of soil genetic resources and management policies.


Assuntos
Aracnídeos/genética , Invertebrados/genética , Nematoides/genética , Rotíferos/genética , Animais , Ecossistema , Florestas , Solo
4.
Ecol Appl ; 30(4): e02072, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925848

RESUMO

During the past century, systematic wildfire suppression has decreased fire frequency and increased fire severity in the western United States of America. While this has resulted in large ecological changes aboveground such as altered tree species composition and increased forest density, little is known about the long-term, belowground implications of altered, ecologically novel, fire regimes, especially on soil biological processes. To better understand the long-term implications of ecologically novel, high-severity fire, we used a 44-yr high-severity fire chronosequence in the Sierra Nevada where forests were historically adapted to frequent, low-severity fire, but were fire suppressed for at least 70 yr. High-severity fire in the Sierra Nevada resulted in a long-term (44 +yr) decrease (>50%, P < 0.05) in soil extracellular enzyme activities, basal microbial respiration (56-72%, P < 0.05), and organic carbon (>50%, P < 0.05) in the upper 5 cm compared to sites that had not been burned for at least 115 yr. However, nitrogen (N) processes were only affected in the most recent fire site (4 yr post-fire). Net nitrification increased by over 600% in the most recent fire site (P < 0.001), but returned to similar levels as the unburned control in the 13-yr site. Contrary to previous studies, we did not find a consistent effect of plant cover type on soil biogeochemical processes in mid-successional (10-50 yr) forest soils. Rather, the 44-yr reduction in soil organic carbon (C) quantity correlated positively with dampened C cycling processes. Our results show the drastic and long-term implication of ecologically novel, high-severity fire on soil biogeochemistry and underscore the need for long-term fire ecological experiments.


Assuntos
Traqueófitas , Incêndios Florestais , Carbono , Ecossistema , Florestas , Solo
5.
Environ Sci Technol ; 54(4): 2257-2267, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31922406

RESUMO

Sequential chemical extraction has been widely used to study soil phosphorus (P) dynamics and inform nutrient management, but its efficacy for assigning P into biologically meaningful pools remains unknown. Here, we evaluated the accuracy of the modified Hedley extraction scheme using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy for nine carbonate-free soil samples with diverse chemical and mineralogical properties resulting from different degrees of soil development. For most samples, the extraction markedly overestimated the pool size of calcium-bound P (Ca-P, extracted by 1 M HCl) due to (1) P redistribution during the alkaline extractions (0.5 M NaHCO3 and then 0.1 M NaOH), creating new Ca-P via formation of Ca phosphates between NaOH-desorbed phosphate and exchangeable Ca2+ and/or (2) dissolution of poorly crystalline Fe and Al oxides by 1 M HCl, releasing P occluded by these oxides into solution. The first mechanism may occur in soils rich in well-crystallized minerals and exchangeable Ca2+ regardless of the presence or absence of CaCO3, whereas the second mechanism likely operates in soils rich in poorly crystalline Fe and Al minerals. The overestimation of Ca-P simultaneously caused underestimation of the pools extracted by the alkaline solutions. Our findings identify key edaphic parameters that remarkably influenced the extractions, which will strengthen our understanding of soil P dynamics using this widely accepted procedure.


Assuntos
Poluentes do Solo , Solo , Minerais , Fosfatos , Fósforo , Espectroscopia por Absorção de Raios X
6.
Environ Sci Technol ; 54(8): 4984-4994, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32181661

RESUMO

Chemical forms of phosphorus (P) in airborne particulate matter (PM) are poorly known and do not correlate with solubility or extraction measurements commonly used to infer speciation. We used P X-ray absorption near-edge structure (XANES) and 31P nuclear magnetic resonance (NMR) spectroscopies to determine P species in PM collected at four mountain sites (Colorado and California). Organic P species dominated samples from high elevations, with organic P estimated at 65-100% of total P in bulk samples by XANES and 79-88% in extracted fractions (62-84% of total P) by NMR regardless of particle size (≥10 or 1-10 µm). Phosphorus monoester and diester organic species were dominant and present in about equal proportions, with low fractions of inorganic P species. By comparison, PM from low elevation contained mixtures of organic and inorganic P, with organic P estimated at 30-60% of total P. Intercontinental PM transport determined from radiogenic lead (Pb) isotopes varied from 0 to 59% (mean 37%) Asian-sourced Pb at high elevation, whereas stronger regional PM inputs were found at low elevation. Airborne flux of bioavailable P to high-elevation ecosystems may be twice as high as estimated by global models, which will disproportionately affect net primary productivity.


Assuntos
Material Particulado/análise , Fósforo/análise , Colorado , Ecossistema , Tamanho da Partícula
7.
J Basic Microbiol ; 60(8): 730-734, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32529642

RESUMO

Endophytes have been defined as microorganisms living inside plant tissues without causing negative effects on their hosts. Endophytic microbes have been extensively studied for their plant growth-promoting traits. However, analyses of endophytes require complete removal of epiphytic microorganisms. We found that the established tests to evaluate surface sterility, polymerase chain reaction, and leaf imprints, are unreliable. Therefore, we used scanning electron microscopy (SEM) as an additional assessment of epiphyte removal. We used a diverse suite of sterilization protocols to remove epiphytic microorganisms from the leaves of a gymnosperm and an angiosperm tree to test the influence of leaf morphology on the efficacy of these methods. Additionally, leaf tissue damage was also evaluated by SEM, as damaging the leaves might have an impact on endophytes and could lead to inaccurate assessment of endophytic communities. Our study indicates, that complete removal of the leaf cuticle by the sterilization technique assures loss of epiphytic microbes, and that leaves of different tree species may require different sterilization protocols. Furthermore, our study demonstrates the importance of choosing the appropriate sterilization protocol to prevent erroneous interpretation of host-endophyte interactions. Moreover, it shows the utility of SEM for evaluating the effectiveness of surface sterilization methods and their impact on leaf tissue integrity.


Assuntos
Folhas de Planta , Esterilização/métodos , Endófitos/isolamento & purificação , Endófitos/fisiologia , Microscopia Eletrônica de Varredura , Pinus/microbiologia , Folhas de Planta/microbiologia , Folhas de Planta/ultraestrutura , Populus/microbiologia
8.
Glob Chang Biol ; 24(12): 5933-5947, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30295387

RESUMO

The release of water during snowmelt orchestrates a variety of important belowground biogeochemical processes in seasonally snow-covered ecosystems, including the production and consumption of greenhouse gases (GHGs) by soil microorganisms. Snowmelt timing is advancing rapidly in these ecosystems, but there is still a need to isolate the effects of earlier snowmelt on soil GHG fluxes. For an improved mechanistic understanding of the biogeochemical effects of snowmelt timing during the snow-free period, we manipulated a high-elevation forest that typically receives over two meters of snowfall but little summer precipitation to influence legacy effects of snowmelt timing. We altered snowmelt rates for two years using black sand to accelerate snowmelt and white fabric to postpone snowmelt, thus creating a two- to three-week disparity in snowmelt timing. Soil microclimate and fluxes of carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) were monitored weekly to monthly during the snow-free period. Microbial abundances were estimated by potential assays near the end of each snow-free period. Although earlier snowmelt caused soil drying, we found no statistically significant effects (p < 0.05) of altered snowmelt timing on fluxes of CO2 or N2 O, or soil microbial abundances. Soil CH4 fluxes, however, did respond to snowmelt timing, with 18% lower rates of CH4 uptake in the earlier snowmelt treatment, but only after a dry winter. Cumulative CO2 emission and CH4 uptake were 43% and 88% greater, respectively, after the dry winter. We conclude that soil GHG fluxes can be surprisingly resistant to hydrological changes associated with earlier snowmelt, likely because of persistent moisture and microbial activities in deeper mineral soils. As a result, a drier California in the future may cause seasonally snow-covered soils in the Sierra Nevada to emit more GHGs, not less.


Assuntos
Florestas , Gases de Efeito Estufa , Estações do Ano , Neve , Solo/química , California , Dióxido de Carbono/análise , Ecossistema , Metano/análise , Óxido Nitroso/análise
9.
Ecol Appl ; 26(8): 2400-2411, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27859967

RESUMO

Increasing tree density that followed fire exclusion after the 1880s in the southwestern United States may have also altered nutrient cycles and led to a carbon (C) sink that constitutes a significant component of the U.S. C budget. Yet, empirical data quantifying century-scale changes in C or nutrients due to fire exclusion are rare. We used tree-ring reconstructions of stand structure from five ponderosa pine-dominated sites from across northern Arizona to compare live tree C, nitrogen (N), and phosphorus (P) storage between the 1880s and 1990s. Live tree biomass in the 1990s contained up to three times more C, N, and P than in 1880s. However, the increase in C storage was smaller than values used in recent U.S. C budgets. Furthermore, trees that had established prior to the 1880s accounted for a large fraction (28-66%) of the C, N, and P stored in contemporary stands. Overall, our century-scale analysis revealed that forests of the 1880s were on a trajectory to accumulate C and nutrients in trees even in the absence of fire exclusion, either because growing conditions became more favorable after the 1880s or because forests in the 1880s included age or size cohorts poised for accelerated growth. These results may lead to a reduction in the C sink attributed to fire exclusion, and they refine our understanding of reference conditions for restoration management of fire-prone forests.


Assuntos
Carbono , Incêndios , Árvores , Arizona , Ecossistema , Sudoeste dos Estados Unidos
10.
Oecologia ; 175(1): 395-407, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24549939

RESUMO

Stand-replacing wildfires are a novel disturbance within ponderosa pine (Pinus ponderosa) forests of the southwestern United States, and they can convert forests to grasslands or shrublands for decades. While most research shows that soil inorganic N pools and fluxes return to pre-fire levels within a few years, we wondered if vegetation conversion (ponderosa pine to bunchgrass) following stand-replacing fires might be accompanied by a long-term shift in N cycling processes. Using a 34-year stand-replacing wildfire chronosequence with paired, adjacent unburned patches, we examined the long-term dynamics of net and gross nitrogen (N) transformations. We hypothesized that N availability in burned patches would become more similar to those in unburned patches over time after fire as these areas become re-vegetated. Burned patches had higher net and gross nitrification rates than unburned patches (P < 0.01 for both), and nitrification accounted for a greater proportion of N mineralization in burned patches for both net (P < 0.01) and gross (P < 0.04) N transformation measurements. However, trends with time-after-fire were not observed for any other variables. Our findings contrast with previous work, which suggested that high nitrification rates are a short-term response to disturbance. Furthermore, high nitrification rates at our site were not simply correlated with the presence of herbaceous vegetation. Instead, we suggest that stand-replacing wildfire triggers a shift in N cycling that is maintained for at least three decades by various factors, including a shift from a woody to an herbaceous ecosystem and the presence of fire-deposited charcoal.


Assuntos
Ecossistema , Incêndios , Nitrificação , Pinus ponderosa/fisiologia , Nitrogênio/química , Solo/química , Sudoeste dos Estados Unidos , Árvores/fisiologia
11.
New Phytol ; 195(3): 631-639, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22642377

RESUMO

Soil carbon dioxide (CO(2)) efflux is a major component of terrestrial carbon (C) cycles; yet, the demonstration of covariation between overstory tree genetic-based traits and soil C flux remains a major frontier in understanding biological controls over soil C. Here, we used a common garden with two native tree species, Populus fremontii and P. angustifolia, and their naturally occurring hybrids to test the predictability of belowground C fluxes on the basis of taxonomic identity and genetic marker composition of replicated clones of individual genotypes. Three patterns emerged: soil CO(2) efflux and ratios of belowground flux to aboveground productivity differ by as much as 50-150% as a result of differences in clone identity and cross type; on the basis of Mantel tests of molecular marker matrices, we found that c. 30% of this variation was genetically based, in which genetically similar trees support more similar soil CO(2) efflux under their canopies than do genetically dissimilar trees; and the patterns detected in an experimental garden match observations in the wild, and seem to be unrelated to measured abiotic factors. Our findings suggest that the genetic makeup of the plants growing on soil has a significant influence on the release of C from soils to the atmosphere.


Assuntos
Carbono/química , Ecossistema , Solo/química , Árvores/genética , Ciclo do Carbono , Dióxido de Carbono/química , Quimera/genética , Cruzamentos Genéticos , Variação Genética , Genótipo , Populus/química , Populus/genética , Populus/fisiologia , Árvores/química , Árvores/fisiologia
12.
Glob Chang Biol ; 18(10): 3171-3185, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741823

RESUMO

Carbon uptake by forests is a major sink in the global carbon cycle, helping buffer the rising concentration of CO2 in the atmosphere, yet the potential for future carbon uptake by forests is uncertain. Climate warming and drought can reduce forest carbon uptake by reducing photosynthesis, increasing respiration, and by increasing the frequency and intensity of wildfires, leading to large releases of stored carbon. Five years of eddy covariance measurements in a ponderosa pine (Pinus ponderosa)-dominated ecosystem in northern Arizona showed that an intense wildfire that converted forest into sparse grassland shifted site carbon balance from sink to source for at least 15 years after burning. In contrast, recovery of carbon sink strength after thinning, a management practice used to reduce the likelihood of intense wildfires, was rapid. Comparisons between an undisturbed-control site and an experimentally thinned site showed that thinning reduced carbon sink strength only for the first two posttreatment years. In the third and fourth posttreatment years, annual carbon sink strength of the thinned site was higher than the undisturbed site because thinning reduced aridity and drought limitation to carbon uptake. As a result, annual maximum gross primary production occurred when temperature was 3 °C higher at the thinned site compared with the undisturbed site. The severe fire consistently reduced annual evapotranspiration (range of 12-30%), whereas effects of thinning were smaller and transient, and could not be detected in the fourth year after thinning. Our results show large and persistent effects of intense fire and minor and short-lived effects of thinning on southwestern ponderosa pine ecosystem carbon and water exchanges.

13.
ISME J ; 16(7): 1853-1863, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35430593

RESUMO

Increasing wildfire severity, which is common throughout the western United States, can have deleterious effects on plant regeneration and large impacts on carbon (C) and nitrogen (N) cycling rates. Soil microbes are pivotal in facilitating these elemental cycles, so understanding the impact of increasing fire severity on soil microbial communities is critical. Here, we assess the long-term impact of high-severity fires on the soil microbiome. We find that high-severity wildfires result in a multi-decadal (>25 y) recovery of the soil microbiome mediated by concomitant differences in aboveground vegetation, soil chemistry, and microbial assembly processes. Our results depict a distinct taxonomic and functional successional pattern of increasing selection in post-fire soil microbial communities. Changes in microbiome composition corresponded with changes in microbial functional potential, specifically altered C metabolism and enhanced N cycling potential, which related to rates of potential decomposition and inorganic N availability, respectively. Based on metagenome-assembled genomes, we show that bacterial genomes enriched in our earliest site (4 y since fire) harbor distinct traits such as a robust stress response and a high potential to degrade pyrogenic, polyaromatic C that allow them to thrive in post-fire environments. Taken together, these results provide a biological basis for previously reported process rate measurements and explain the temporal dynamics of post-fire biogeochemistry, which ultimately constrains ecosystem recovery.


Assuntos
Incêndios , Microbiota , Incêndios Florestais , Ecossistema , Genômica , Solo
14.
Front Microbiol ; 13: 856454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35836417

RESUMO

Dust provides an ecologically significant input of nutrients, especially in slowly eroding ecosystems where chemical weathering intensity limits nutrient inputs from underlying bedrock. In addition to nutrient inputs, incoming dust is a vector for dispersing dust-associated microorganisms. While little is known about dust-microbial dispersal, dust deposits may have transformative effects on ecosystems far from where the dust was emitted. Using molecular analyses, we examined spatiotemporal variation in incoming dust microbiomes along an elevational gradient within the Sierra Nevada of California. We sampled throughout two dry seasons and found that dust microbiomes differed by elevation across two summer dry seasons (2014 and 2015), which corresponded to competing droughts in dust source areas. Dust microbial taxa richness decreased with elevation and was inversely proportional to dust heterogeneity. Likewise, dust phosphorus content increased with elevation. At lower elevations, early season dust microbiomes were more diverse than those found later in the year. The relative abundances of microbial groups shifted during the summer dry season. Furthermore, mutualistic fungal diversity increased with elevation, which may have corresponded with the biogeography of their plant hosts. Although dust fungal pathogen diversity was equivalent across elevations, elevation and sampling month interactions for the relative abundance, diversity, and richness of fungal pathogens suggest that these pathogens differed temporally across elevations, with potential implications for humans and wildlife. This study shows that landscape topography and droughts in source locations may alter the composition and diversity of ecologically relevant dust-associated microorganisms.

15.
Nat Commun ; 12(1): 2089, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33828081

RESUMO

Increasing global temperatures are predicted to stimulate soil microbial respiration. The direct and indirect impacts of warming on soil microbes, nevertheless, remain unclear. This is particularly true for understudied subsoil microbes. Here, we show that 4.5 years of whole-profile soil warming in a temperate mixed forest results in altered microbial community composition and metabolism in surface soils, partly due to carbon limitation. However, microbial communities in the subsoil responded differently to warming than in the surface. Throughout the soil profile-but to a greater extent in the subsoil-physiologic and genomic measurements show that phylogenetically different microbes could utilize complex organic compounds, dampening the effect of altered resource availability induced by warming. We find subsoil microbes had 20% lower carbon use efficiencies and 47% lower growth rates compared to surface soils, which constrain microbial communities. Collectively, our results show that unlike in surface soils, elevated microbial respiration in subsoils may continue without microbial community change in the near-term.


Assuntos
Aquecimento Global , Metagenoma , Microbiologia do Solo , Solo/química , Bactérias/classificação , Bactérias/genética , California , Carbono/metabolismo , Florestas , Microbiota , Nitrogênio/metabolismo , RNA Ribossômico 16S , Temperatura
16.
Front Microbiol ; 12: 687971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512566

RESUMO

The rapidly increasing global population and anthropogenic climate change have created intense pressure on agricultural systems to produce increasingly more food under steadily challenging environmental conditions. Simultaneously, industrial agriculture is negatively affecting natural and agricultural ecosystems because of intensive irrigation and fertilization to fully utilize the potential of high-yielding cultivars. Growth-promoting microbes that increase stress tolerance and crop yield could be a useful tool for helping mitigate these problems. We investigated if commercially grown almonds might be a resource for plant colonizing bacteria with growth promotional traits that could be used to foster more productive and sustainable agricultural ecosystems. We isolated an endophytic bacterium from almond leaves that promotes growth of the model plant Arabidopsis thaliana. Genome sequencing revealed a novel Erwinia gerundensis strain (A4) that exhibits the ability to increase access to plant nutrients and to produce the stress-mitigating polyamine spermidine. Because E. gerundensis is known to be able to colonize diverse plant species including cereals and fruit trees, A4 may have the potential to be applied to a wide variety of crop systems.

17.
ISME Commun ; 1(1): 78, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37938290

RESUMO

Subsoil microbiomes play important roles in soil carbon and nutrient cycling, yet our understanding of the controls on subsoil microbial communities is limited. Here, we investigated the direct (mean annual temperature and precipitation) and indirect (soil chemistry) effects of climate on microbiome composition and extracellular enzyme activity throughout the soil profile across two elevation-bioclimatic gradients in central California, USA. We found that microbiome composition changes and activity decreases with depth. Across these sites, the direct influence of climate on microbiome composition and activity was relatively lower at depth. Furthermore, we found that certain microbial taxa change in relative abundance over large temperature and precipitation gradients only in specific soil horizons, highlighting the depth dependence of the climatic controls on microbiome composition. Our finding that the direct impacts of climate are muted at depth suggests that deep soil microbiomes may lag in their acclimation to new temperatures with a changing climate.

18.
Ecology ; 91(2): 474-84, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20392012

RESUMO

The Walker and Syers model of phosphorus (P) transformations during pedogenesis is widely accepted for the development of humid ecosystems, but long-term P dynamics of more arid ecosystems remain poorly understood. We tested the Walker and Syers model in semiarid piñon-juniper woodlands by measuring soil P fractions under tree canopies and in intercanopy spaces along a well-constrained, approximately 3000 ka (1 ka = 1000 years) volcanic substrate age gradient in northern Arizona, USA. The various pools of soil P behaved largely as predicted; total soil P and primary mineral P declined consistently with substrate age, labile inorganic P increased early in soil development and then declined at later stages, and organic phosphorus increased consistently across the chronosequence. Within each site, soils under tree canopies tended to have higher concentrations of labile and intermediately available P fractions compared to intercanopy soils. However, the degree of spatial heterogeneity conferred by tree islands was moderated by the stage of soil development. In contrast, tree islands had no influence on within-site distribution of more recalcitrant soil P pools, which appear to be controlled solely by the stage of pedogenesis. Coincident with declines in total P, primary mineral P, and labile inorganic P, we found that phosphatase enzyme activity increased with substrate age; a result consistent with greater ecosystem-level P demand on older, more highly weathered substrates. Our results suggest that, compared to humid climates, reduced inputs of water, energy, and acidity to semiarid ecosystems slow the rate of change in P fractions during pedogenesis, but the overall pattern remains consistent with the Walker and Syers model. Furthermore, our data imply that pedogenic change may be an important factor controlling the spatial distribution of labile P pools in semiarid ecosystems. Taken together, these data should both broaden and unify terrestrial ecosystem development theory.


Assuntos
Modelos Químicos , Fósforo/química , Solo/análise , Arizona , Ecossistema , Plantas/química , Fatores de Tempo , Árvores
19.
Ecol Evol ; 10(13): 6593-6609, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32724535

RESUMO

Giant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relict populations on the western slopes of the California Sierra Nevada. In these settings, it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extend more broadly to nonmycorrhizal components of the soil microbial community. To address this question, we used next-generation amplicon sequencing to characterize bacterial/archaeal and fungal microbiomes in bulk soil (0-5 cm) beneath giant sequoia and co-occurring sugar pine (Pinus lambertiana) individuals. We did this across two groves with distinct parent material in Yosemite National Park, USA. We found tree-associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a core community double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community and that some but not all host tree differences are grove-dependent.

20.
Nat Ecol Evol ; 4(2): 210-220, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015427

RESUMO

The role of soil biodiversity in regulating multiple ecosystem functions is poorly understood, limiting our ability to predict how soil biodiversity loss might affect human wellbeing and ecosystem sustainability. Here, combining a global observational study with an experimental microcosm study, we provide evidence that soil biodiversity (bacteria, fungi, protists and invertebrates) is significantly and positively associated with multiple ecosystem functions. These functions include nutrient cycling, decomposition, plant production, and reduced potential for pathogenicity and belowground biological warfare. Our findings also reveal the context dependency of such relationships and the importance of the connectedness, biodiversity and nature of the globally distributed dominant phylotypes within the soil network in maintaining multiple functions. Moreover, our results suggest that the positive association between plant diversity and multifunctionality across biomes is indirectly driven by soil biodiversity. Together, our results provide insights into the importance of soil biodiversity for maintaining soil functionality locally and across biomes, as well as providing strong support for the inclusion of soil biodiversity in conservation and management programmes.


Assuntos
Ecossistema , Solo , Biodiversidade , Fungos , Humanos , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa