Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(11): 2321-2333, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39381876

RESUMO

BACKGROUND: COVID-19 is associated with acute risk of major adverse cardiac events (MACE), including myocardial infarction, stroke, and mortality (all-cause). However, the duration and underlying determinants of heightened risk of cardiovascular disease and MACE post-COVID-19 are not known. METHODS: Data from the UK Biobank was used to identify COVID-19 cases (n=10 005) who were positive for polymerase chain reaction (PCR+)-based tests for SARS-CoV-2 infection (n=8062) or received hospital-based International Classification of Diseases version-10 (ICD-10) codes for COVID-19 (n=1943) between February 1, 2020 and December 31, 2020. Population controls (n=217 730) and propensity score-matched controls (n=38 860) were also drawn from the UK Biobank during the same period. Proportional hazard models were used to evaluate COVID-19 for association with long-term (>1000 days) risk of MACE and as a coronary artery disease risk equivalent. Additional analyses examined whether COVID-19 interacted with genetic determinants to affect the risk of MACE and its components. RESULTS: The risk of MACE was elevated in COVID-19 cases at all levels of severity (HR, 2.09 [95% CI, 1.94-2.25]; P<0.0005) and to a greater extent in cases hospitalized for COVID-19 (HR, 3.85 [95% CI, 3.51-4.24]; P<0.0005). Hospitalization for COVID-19 represented a coronary artery disease risk equivalent since incident MACE risk among cases without history of cardiovascular disease was even higher than that observed in patients with cardiovascular disease without COVID-19 (HR, 1.21 [95% CI, 1.08-1.37]; P<0.005). A significant genetic interaction was observed between the ABO locus and hospitalization for COVID-19 (Pinteraction=0.01), with risk of thrombotic events being increased in subjects with non-O blood types (HR, 1.65 [95% CI, 1.29-2.09]; P=4.8×10-5) to a greater extent than subjects with blood type O (HR, 0.96 [95% CI, 0.66-1.39]; P=0.82). CONCLUSIONS: Hospitalization for COVID-19 represents a coronary artery disease risk equivalent, with post-acute myocardial infarction and stroke risk particularly heightened in non-O blood types. These results may have important clinical implications and represent, to our knowledge, one of the first examples of a gene-pathogen exposure interaction for thrombotic events.


Assuntos
Sistema ABO de Grupos Sanguíneos , COVID-19 , Doença da Artéria Coronariana , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/epidemiologia , COVID-19/sangue , COVID-19/complicações , COVID-19/mortalidade , COVID-19/diagnóstico , Sistema ABO de Grupos Sanguíneos/genética , Masculino , Feminino , Pessoa de Meia-Idade , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/diagnóstico , Idoso , SARS-CoV-2/genética , Medição de Risco , Reino Unido/epidemiologia , Fatores de Risco , Predisposição Genética para Doença , Estudos de Casos e Controles , Adulto , Fatores de Tempo , Galactosiltransferases
2.
J Allergy Clin Immunol ; 153(5): 1406-1422.e6, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244725

RESUMO

BACKGROUND: Type 2 innate lymphoid cells (ILC2s) play a pivotal role in type 2 asthma. CD226 is a costimulatory molecule involved in various inflammatory diseases. OBJECTIVE: We aimed to investigate CD226 expression and function within human and mouse ILC2s, and to assess the impact of targeting CD226 on ILC2-mediated airway hyperreactivity (AHR). METHODS: We administered IL-33 intranasally to wild-type mice, followed by treatment with anti-CD226 antibody or isotype control. Pulmonary ILC2s were sorted for ex vivo analyses through RNA sequencing and flow cytometry. Next, we evaluated the effects of CD226 on AHR and lung inflammation in wild-type and Rag2-/- mice. Additionally, we compared peripheral ILC2s from healthy donors and asthmatic patients to ascertain the role of CD226 in human ILC2s. RESULTS: Our findings demonstrated an inducible expression of CD226 in activated ILC2s, enhancing their cytokine secretion and effector functions. Mechanistically, CD226 alters intracellular metabolism and enhances PI3K/AKT and MAPK signal pathways. Blocking CD226 ameliorates ILC2-dependent AHR in IL-33 and Alternaria alternata-induced models. Interestingly, CD226 is expressed and inducible in human ILC2s, and its blocking reduces cytokine production. Finally, we showed that peripheral ILC2s in asthmatic patients exhibited elevated CD226 expression compared to healthy controls. CONCLUSION: Our findings underscore the potential of CD226 as a novel therapeutic target in ILC2s, presenting a promising avenue for ameliorating AHR and allergic asthma.


Assuntos
Antígenos de Diferenciação de Linfócitos T , Asma , Imunidade Inata , Linfócitos , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos de Diferenciação de Linfócitos T/imunologia , Antígenos de Diferenciação de Linfócitos T/genética , Asma/imunologia , Interleucina-33/imunologia , Linfócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
J Nutr ; 152(7): 1655-1665, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35218194

RESUMO

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) among Latinos is partially attributed to a prevalent C>G polymorphism in the patatin-like phospholipase 3 (PNPLA3) gene. Cross-sectional analyses in Latino children showed the association between dietary sugar and liver fat was exacerbated by GG genotype. Pediatric feeding studies show extreme sugar restriction improves liver fat, but no prior trial has examined the impact of a clinical intervention or whether effects differ by PNPLA3 genotype. OBJECTIVES: We aimed to test effects of a clinical intervention to reduce dietary sugar compared with standard dietary advice on change in liver fat, and secondary-endpoint changes in liver fibrosis, liver enzymes, and anthropometrics; and whether effects differ by PNPLA3 genotype (assessed retrospectively) in Latino youth with obesity (BMI ≥ 95th percentile). METHODS: This parallel-design trial randomly assigned participants (n = 105; mean baseline liver fat: 12.7%; mean age: 14.8 y) to control or sugar reduction (goal of ≤10% of calories from free sugar) for 12 wk. Intervention participants met with a dietitian monthly and received delivery of bottled water. Changes in liver fat, by MRI, were assessed by intervention group via general linear models. RESULTS: Mean free sugar intake decreased in intervention compared with control [11.5% to 7.3% compared with 13.9% to 10.7% (% energy), respectively; P = 0.02], but there were no significant effects on liver outcomes or anthropometrics (Pall > 0.10), and no PNPLA3 interactions (Pall > 0.10). In exploratory analyses, participants with whole-body fat mass (FM) reduction (mean ± SD: -1.9 ± 2.4 kg), irrespective of randomization, had significant reductions in liver fat compared with participants without FM reduction (median: -2.1%; IQR: -6.5% to -0.8% compared with 0.3%; IQR: -1.0% to 1.1%; P < 0.001). CONCLUSIONS: In Latino youth with obesity, a dietitian-led sugar reduction intervention did not improve liver outcomes compared with control, regardless of PNPLA3 genotype. Results suggest FM reduction is important for liver fat reduction, confirming clinical recommendations of weight loss and a healthy diet for pediatric NAFLD.This trial was registered at clinicaltrials.gov as NCT02948647.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Adolescente , Criança , Estudos Transversais , Açúcares da Dieta , Predisposição Genética para Doença , Genótipo , Hispânico ou Latino , Humanos , Lipase/genética , Fígado , Proteínas de Membrana/genética , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade , Fosfolipases/genética , Polimorfismo de Nucleotídeo Único , Estudos Retrospectivos
4.
PLoS Genet ; 15(12): e1008528, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869344

RESUMO

Asthma is a chronic inflammatory disease of the airways with contributions from genes, environmental exposures, and their interactions. While genome-wide association studies (GWAS) in humans have identified ~200 susceptibility loci, the genetic factors that modulate risk of asthma through gene-environment (GxE) interactions remain poorly understood. Using the Hybrid Mouse Diversity Panel (HMDP), we sought to identify the genetic determinants of airway hyperreactivity (AHR) in response to diesel exhaust particles (DEP), a model traffic-related air pollutant. As measured by invasive plethysmography, AHR under control and DEP-exposed conditions varied 3-4-fold in over 100 inbred strains from the HMDP. A GWAS with linear mixed models mapped two loci significantly associated with lung resistance under control exposure to chromosomes 2 (p = 3.0x10-6) and 19 (p = 5.6x10-7). The chromosome 19 locus harbors Il33 and is syntenic to asthma association signals observed at the IL33 locus in humans. A GxE GWAS for post-DEP exposure lung resistance identified a significantly associated locus on chromosome 3 (p = 2.5x10-6). Among the genes at this locus is Dapp1, an adaptor molecule expressed in immune-related and mucosal tissues, including the lung. Dapp1-deficient mice exhibited significantly lower AHR than control mice but only after DEP exposure, thus functionally validating Dapp1 as one of the genes underlying the GxE association at this locus. In summary, our results indicate that some of the genetic determinants for asthma-related phenotypes may be shared between mice and humans, as well as the existence of GxE interactions in mice that modulate lung function in response to air pollution exposures relevant to humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Poluentes Atmosféricos/toxicidade , Asma/genética , Hiper-Reatividade Brônquica/induzido quimicamente , Lipoproteínas/genética , Emissões de Veículos/toxicidade , Animais , Asma/induzido quimicamente , Hiper-Reatividade Brônquica/genética , Mapeamento Cromossômico , Modelos Animais de Doenças , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Pletismografia
5.
Eur Heart J ; 42(9): 919-933, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33532862

RESUMO

AIMS: While most patients with myocardial infarction (MI) have underlying coronary atherosclerosis, not all patients with coronary artery disease (CAD) develop MI. We sought to address the hypothesis that some of the genetic factors which establish atherosclerosis may be distinct from those that predispose to vulnerable plaques and thrombus formation. METHODS AND RESULTS: We carried out a genome-wide association study for MI in the UK Biobank (n∼472 000), followed by a meta-analysis with summary statistics from the CARDIoGRAMplusC4D Consortium (n∼167 000). Multiple independent replication analyses and functional approaches were used to prioritize loci and evaluate positional candidate genes. Eight novel regions were identified for MI at the genome wide significance level, of which effect sizes at six loci were more robust for MI than for CAD without the presence of MI. Confirmatory evidence for association of a locus on chromosome 1p21.3 harbouring choline-like transporter 3 (SLC44A3) with MI in the context of CAD, but not with coronary atherosclerosis itself, was obtained in Biobank Japan (n∼165 000) and 16 independent angiography-based cohorts (n∼27 000). Follow-up analyses did not reveal association of the SLC44A3 locus with CAD risk factors, biomarkers of coagulation, other thrombotic diseases, or plasma levels of a broad array of metabolites, including choline, trimethylamine N-oxide, and betaine. However, aortic expression of SLC44A3 was increased in carriers of the MI risk allele at chromosome 1p21.3, increased in ischaemic (vs. non-diseased) coronary arteries, up-regulated in human aortic endothelial cells treated with interleukin-1ß (vs. vehicle), and associated with smooth muscle cell migration in vitro. CONCLUSIONS: A large-scale analysis comprising ∼831 000 subjects revealed novel genetic determinants of MI and implicated SLC44A3 in the pathophysiology of vulnerable plaques.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Doença da Artéria Coronariana/genética , Células Endoteliais , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Japão , Infarto do Miocárdio/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
6.
Eur Heart J ; 42(18): 1742-1756, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33748830

RESUMO

AIMS: Inflammation plays an important role in cardiovascular disease (CVD) development. The NOD-like receptor protein-3 (NLRP3) inflammasome contributes to the development of atherosclerosis in animal models. Components of the NLRP3 inflammasome pathway such as interleukin-1ß can therapeutically be targeted. Associations of genetically determined inflammasome-mediated systemic inflammation with CVD and mortality in humans are unknown. METHODS AND RESULTS: We explored the association of genetic NLRP3 variants with prevalent CVD and cardiovascular mortality in 538 167 subjects on the individual participant level in an explorative gene-centric approach without performing multiple testing. Functional relevance of single-nucleotide polymorphisms on NLRP3 inflammasome activation has been evaluated in monocyte-enriched peripheral blood mononuclear cells (PBMCs). Genetic analyses identified the highly prevalent (minor allele frequency 39.9%) intronic NLRP3 variant rs10754555 to affect NLRP3 gene expression. rs10754555 carriers showed significantly higher C-reactive protein and serum amyloid A plasma levels. Carriers of the G allele showed higher NLRP3 inflammasome activation in isolated human PBMCs. In carriers of the rs10754555 variant, the prevalence of coronary artery disease was significantly higher as compared to non-carriers with a significant interaction between rs10754555 and age. Importantly, rs10754555 carriers had significantly higher risk for cardiovascular mortality during follow-up. Inflammasome inducers (e.g. urate, triglycerides, apolipoprotein C3) modulated the association between rs10754555 and mortality. CONCLUSION: The NLRP3 intronic variant rs10754555 is associated with increased systemic inflammation, inflammasome activation, prevalent coronary artery disease, and mortality. This study provides evidence for a substantial role of genetically driven systemic inflammation in CVD and highlights the NLRP3 inflammasome as a therapeutic target.


Assuntos
Doenças Cardiovasculares/mortalidade , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Inflamassomos/genética , Inflamação/genética , Leucócitos Mononucleares , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética
7.
J Lipid Res ; 62: 100061, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33667465

RESUMO

Individuals with features of metabolic syndrome are particularly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus associated with the severe respiratory disease, coronavirus disease 2019 (COVID-19). Despite considerable attention dedicated to COVID-19, the link between metabolic syndrome and SARS-CoV-2 infection remains unclear. Using data from the UK Biobank, we investigated the relationship between severity of COVID-19 and metabolic syndrome-related serum biomarkers measured prior to SARS-CoV-2 infection. Logistic regression analyses were used to test biomarker levels and biomarker-associated genetic variants with SARS-CoV-2-related outcomes. Among SARS-CoV-2-positive cases and negative controls, a 10 mg/dl increase in serum HDL-cholesterol or apolipoprotein A1 levels was associated with ∼10% reduced risk of SARS-CoV-2 infection, after adjustment for age, sex, obesity, hypertension, type 2 diabetes, and coronary artery disease. Evaluation of known genetic variants for HDL-cholesterol revealed that individuals homozygous for apolipoprotein E4 alleles had ∼2- to 3-fold higher risk of SARS-CoV-2 infection or mortality from COVID-19 compared with apolipoprotein E3 homozygotes, even after adjustment for HDL-cholesterol levels. However, cumulative effects of all evaluated HDL-cholesterol-raising alleles and Mendelian randomization analyses did not reveal association of genetically higher HDL-cholesterol levels with decreased risk of SARS-CoV-2 infection. These results implicate serum HDL-cholesterol and apolipoprotein A1 levels measured prior to SAR-CoV-2 exposure as clinical risk factors for severe COVID-19 infection but do not provide evidence that genetically elevated HDL-cholesterol levels are associated with SAR-CoV-2 infection.


Assuntos
Apolipoproteína A-I , COVID-19 , HDL-Colesterol , Homozigoto , Síndrome Metabólica , SARS-CoV-2/metabolismo , Adulto , Idoso , Apolipoproteína A-I/sangue , Apolipoproteína A-I/genética , Biomarcadores/sangue , COVID-19/sangue , COVID-19/genética , COVID-19/mortalidade , HDL-Colesterol/sangue , HDL-Colesterol/genética , Feminino , Humanos , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/genética , Síndrome Metabólica/mortalidade , Pessoa de Meia-Idade , Gravidade do Paciente , Reino Unido/epidemiologia
8.
Circulation ; 142(6): 546-555, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32654539

RESUMO

BACKGROUND: Studies examining the role of factor V Leiden among patients at higher risk of atherothrombotic events, such as those with established coronary heart disease (CHD), are lacking. Given that coagulation is involved in the thrombus formation stage on atherosclerotic plaque rupture, we hypothesized that factor V Leiden may be a stronger risk factor for atherothrombotic events in patients with established CHD. METHODS: We performed an individual-level meta-analysis including 25 prospective studies (18 cohorts, 3 case-cohorts, 4 randomized trials) from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) consortium involving patients with established CHD at baseline. Participating studies genotyped factor V Leiden status and shared risk estimates for the outcomes of interest using a centrally developed statistical code with harmonized definitions across studies. Cox proportional hazards regression models were used to obtain age- and sex-adjusted estimates. The obtained estimates were pooled using fixed-effect meta-analysis. The primary outcome was composite of myocardial infarction and CHD death. Secondary outcomes included any stroke, ischemic stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality. RESULTS: The studies included 69 681 individuals of whom 3190 (4.6%) were either heterozygous or homozygous (n=47) carriers of factor V Leiden. Median follow-up per study ranged from 1.0 to 10.6 years. A total of 20 studies with 61 147 participants and 6849 events contributed to analyses of the primary outcome. Factor V Leiden was not associated with the combined outcome of myocardial infarction and CHD death (hazard ratio, 1.03 [95% CI, 0.92-1.16]; I2=28%; P-heterogeneity=0.12). Subgroup analysis according to baseline characteristics or strata of traditional cardiovascular risk factors did not show relevant differences. Similarly, risk estimates for the secondary outcomes including stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality were also close to identity. CONCLUSIONS: Factor V Leiden was not associated with increased risk of subsequent atherothrombotic events and mortality in high-risk participants with established and treated CHD. Routine assessment of factor V Leiden status is unlikely to improve atherothrombotic events risk stratification in this population.


Assuntos
Doença das Coronárias/genética , Fator V/genética , Genótipo , Trombose/genética , Aterosclerose , Ensaios Clínicos como Assunto , Doença das Coronárias/diagnóstico , Doença das Coronárias/mortalidade , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Prognóstico , Risco
9.
Curr Atheroscler Rep ; 23(12): 75, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34648097

RESUMO

PURPOSE OF REVIEW: We provide an overview of recent findings with respect to gene-environment (GxE) interactions for cardiovascular disease (CVD) risk and discuss future opportunities for advancing the field. RECENT FINDINGS: Over the last several years, GxE interactions for CVD have mostly been identified for smoking and coronary artery disease (CAD) or related risk factors. By comparison, there is more limited evidence for GxE interactions between CVD outcomes and other exposures, such as physical activity, air pollution, diet, and sex. The establishment of large consortia and population-based cohorts, in combination with new computational tools and mouse genetics platforms, can potentially overcome some of the limitations that have hindered human GxE interaction studies and reveal additional association signals for CVD-related traits. The identification of novel GxE interactions is likely to provide a better understanding of the pathogenesis and genetic liability of CVD, with significant implications for healthy lifestyles and therapeutic strategies.


Assuntos
Doenças Cardiovasculares , Interação Gene-Ambiente , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Fenótipo , Fatores de Risco
10.
Circulation ; 135(24): 2336-2353, 2017 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-28461624

RESUMO

BACKGROUND: Common diseases such as coronary heart disease (CHD) are complex in etiology. The interaction of genetic susceptibility with lifestyle factors may play a prominent role. However, gene-lifestyle interactions for CHD have been difficult to identify. Here, we investigate interaction of smoking behavior, a potent lifestyle factor, with genotypes that have been shown to associate with CHD risk. METHODS: We analyzed data on 60 919 CHD cases and 80 243 controls from 29 studies for gene-smoking interactions for genetic variants at 45 loci previously reported to be associated with CHD risk. We also studied 5 loci associated with smoking behavior. Study-specific gene-smoking interaction effects were calculated and pooled using fixed-effects meta-analyses. Interaction analyses were declared to be significant at a P value of <1.0×10-3 (Bonferroni correction for 50 tests). RESULTS: We identified novel gene-smoking interaction for a variant upstream of the ADAMTS7 gene. Every T allele of rs7178051 was associated with lower CHD risk by 12% in never-smokers (P=1.3×10-16) in comparison with 5% in ever-smokers (P=2.5×10-4), translating to a 60% loss of CHD protection conferred by this allelic variation in people who smoked tobacco (interaction P value=8.7×10-5). The protective T allele at rs7178051 was also associated with reduced ADAMTS7 expression in human aortic endothelial cells and lymphoblastoid cell lines. Exposure of human coronary artery smooth muscle cells to cigarette smoke extract led to induction of ADAMTS7. CONCLUSIONS: Allelic variation at rs7178051 that associates with reduced ADAMTS7 expression confers stronger CHD protection in never-smokers than in ever-smokers. Increased vascular ADAMTS7 expression may contribute to the loss of CHD protection in smokers.


Assuntos
Doença das Coronárias/genética , Doença das Coronárias/prevenção & controle , Loci Gênicos/genética , Predisposição Genética para Doença/genética , Fumar/genética , Proteína ADAMTS7/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Cultivadas , Doença das Coronárias/epidemiologia , Vasos Coronários/patologia , Vasos Coronários/fisiologia , Feminino , Interação Gene-Ambiente , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fumar/efeitos adversos , Fumar/epidemiologia
11.
Nature ; 492(7429): 369-75, 2012 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-23222517

RESUMO

Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.


Assuntos
Eritrócitos/metabolismo , Loci Gênicos , Estudo de Associação Genômica Ampla , Fenótipo , Animais , Ciclo Celular/genética , Citocinas/metabolismo , Drosophila melanogaster/genética , Eritrócitos/citologia , Feminino , Regulação da Expressão Gênica/genética , Hematopoese/genética , Hemoglobinas/genética , Humanos , Masculino , Camundongos , Especificidade de Órgãos , Polimorfismo de Nucleotídeo Único/genética , Interferência de RNA , Transdução de Sinais/genética
12.
Curr Atheroscler Rep ; 19(2): 6, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28130654

RESUMO

PURPOSE OF REVIEW: We provide an overview of our current understanding of the genetic architecture of coronary artery disease (CAD) and discuss areas of research that provide excellent opportunities for further exploration. RECENT FINDINGS: Large-scale studies in human populations, coupled with rapid advances in genetic technologies over the last decade, have clearly established the association of common genetic variation with risk of CAD. However, the effect sizes of the susceptibility alleles are for the most part modest and collectively explain only a small fraction of the overall heritability. By comparison, evidence that rare variants make a substantial contribution to risk of CAD has been somewhat disappointing thus far, suggesting that other biological mechanisms have yet to be discovered. Emerging data suggests that novel pathways involved in the development of CAD can be identified through complementary and integrative systems genetics strategies in mice or humans. There is also convincing evidence that gut bacteria play a previously unrecognized role in the development of CAD, particularly through metabolism of certain dietary nutrients that lead to proatherogenic metabolites in the circulation. A major effort is now underway to functionally understand the newly discovered genetic and biological associations for CAD, which could lead to the development of potentially novel therapeutic strategies. Other important areas of investigation for understanding the pathophysiology of CAD, including epistatic interactions between genes or with either sex and environmental factors, have not been studied on a broad scope and represent additional opportunities for future studies.


Assuntos
Doença da Artéria Coronariana/genética , Alelos , Animais , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco
13.
Nature ; 480(7376): 201-8, 2011 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22139419

RESUMO

Platelets are the second most abundant cell type in blood and are essential for maintaining haemostasis. Their count and volume are tightly controlled within narrow physiological ranges, but there is only limited understanding of the molecular processes controlling both traits. Here we carried out a high-powered meta-analysis of genome-wide association studies (GWAS) in up to 66,867 individuals of European ancestry, followed by extensive biological and functional assessment. We identified 68 genomic loci reliably associated with platelet count and volume mapping to established and putative novel regulators of megakaryopoiesis and platelet formation. These genes show megakaryocyte-specific gene expression patterns and extensive network connectivity. Using gene silencing in Danio rerio and Drosophila melanogaster, we identified 11 of the genes as novel regulators of blood cell formation. Taken together, our findings advance understanding of novel gene functions controlling fate-determining events during megakaryopoiesis and platelet formation, providing a new example of successful translation of GWAS to function.


Assuntos
Plaquetas/citologia , Hematopoese/genética , Megacariócitos/citologia , Animais , Plaquetas/metabolismo , Tamanho Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Europa (Continente) , Perfilação da Expressão Gênica , Inativação Gênica , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Megacariócitos/metabolismo , Contagem de Plaquetas , Mapas de Interação de Proteínas , Transcrição Gênica/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
14.
Hum Mol Genet ; 23(8): 2198-209, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24256810

RESUMO

Genome-wide association studies of colorectal cancer (CRC) have identified a number of common variants associated with modest risk, including rs3802842 at chromosome 11q23.1. Several genes map to this region but rs3802842 does not map to any known transcribed or regulatory sequences. We reasoned, therefore, that rs3802842 is not the functional single-nucleotide polymorphism (SNP), but is in linkage disequilibrium (LD) with a functional SNP(s). We performed ChIP-seq for histone modifications in SW480 and HCT-116 CRC cells, and incorporated ChIP-seq and DNase I hypersensitivity data available through ENCODE within a 137-kb genomic region containing rs3802842 on 11q23.1. We identified SNP rs10891246 in LD with rs3802842 that mapped within a bidirectional promoter region of genes C11orf92 and C11orf93. Following mutagenesis to the risk allele, the promoter demonstrated lower levels of reporter gene expression. A second SNP rs7130173 was identified in LD with rs3802842 that mapped to a candidate enhancer region, which showed strong unidirectional activity in both HCT-116 and SW480 CRC cells. The risk allele of rs7130173 demonstrated reduced enhancer activity compared with the common allele, and reduced nuclear protein binding affinity in electromobility shift assays compared with the common allele suggesting differential transcription factor (TF) binding. SNPs rs10891246 and rs7130173 are on the same haplotype, and expression quantitative trait loci (eQTL) analyses of neighboring genes implicate C11orf53, C11orf92 and C11orf93 as candidate target genes. These data imply that rs10891246 and rs7130173 are functional SNPs mapping to 11q23.1 and that C11orf53, C11orf92 and C11orf93 represent novel candidate target genes involved in CRC etiology.


Assuntos
Mapeamento Cromossômico , Cromossomos Humanos Par 11/genética , Neoplasias Colorretais/genética , Elementos Facilitadores Genéticos/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Luciferases/metabolismo , Repetições de Microssatélites/genética , Locos de Características Quantitativas , Fatores de Risco , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas
15.
Hum Mol Genet ; 22(16): 3381-93, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23620142

RESUMO

Increased systemic levels of myeloperoxidase (MPO) are associated with the risk of coronary artery disease (CAD). To identify the genetic factors that are associated with circulating MPO levels, we carried out a genome-wide association study (GWAS) and a gene-centric analysis in subjects of European ancestry and African Americans (AAs). A locus on chromosome 1q31.1 containing the complement factor H (CFH) gene was strongly associated with serum MPO levels in 9305 subjects of European ancestry (lead SNP rs800292; P = 4.89 × 10(-41)) and in 1690 AA subjects (rs505102; P = 1.05 × 10(-8)). Gene-centric analyses in 8335 subjects of European ancestry additionally identified two rare MPO coding sequence variants that were associated with serum MPO levels (rs28730837, P = 5.21 × 10(-12); rs35897051, P = 3.32 × 10(-8)). A GWAS for plasma MPO levels in 9260 European ancestry subjects identified a chromosome 17q22 region near MPO that was significantly associated (lead SNP rs6503905; P = 2.94 × 10(-12)), but the CFH locus did not exhibit evidence of association with plasma MPO levels. Functional analyses revealed that rs800292 was associated with levels of complement proteins in serum. Variants at chromosome 17q22 also had pleiotropic cis effects on gene expression. In a case-control analysis of ∼80 000 subjects from CARDIoGRAM, none of the identified single-nucleotide polymorphisms (SNPs) were associated with CAD. These results suggest that distinct genetic factors regulate serum and plasma MPO levels, which may have relevance for various acute and chronic inflammatory disorders. The clinical implications for CAD and a better understanding of the functional basis for the association of CFH and MPO variants with circulating MPO levels require further study.


Assuntos
Fator H do Complemento/genética , Peroxidase/sangue , Peroxidase/genética , Adulto , Negro ou Afro-Americano/genética , Idoso , Estudos de Casos e Controles , Doença da Artéria Coronariana/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Estudos de Associação Genética , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , População Branca/genética , Adulto Jovem
16.
Arterioscler Thromb Vasc Biol ; 34(6): 1307-13, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24675659

RESUMO

OBJECTIVE: Elevated levels of plasma trimethylamine N-oxide (TMAO), the product of gut microbiome and hepatic-mediated metabolism of dietary choline and L-carnitine, have recently been identified as a novel risk factor for the development of atherosclerosis in mice and humans. The goal of this study was to identify the genetic factors associated with plasma TMAO levels. APPROACH AND RESULTS: We used comparative genome-wide association study approaches to discover loci for plasma TMAO levels in mice and humans. A genome-wide association study in the hybrid mouse diversity panel identified a locus for TMAO levels on chromosome 3 (P=2.37 × 10(-6)) that colocalized with a highly significant (P=1.07 × 10(-20)) cis-expression quantitative trait locus for solute carrier family 30 member 7. This zinc transporter could thus represent 1 positional candidate gene responsible for the association signal at this locus in mice. A genome-wide association study for plasma TMAO levels in 1973 humans identified 2 loci with suggestive evidence of association (P=3.0 × 10(-7)) on chromosomes 1q23.3 and 2p12. However, genotyping of the lead variants at these loci in 1892 additional subjects failed to replicate their association with plasma TMAO levels. CONCLUSIONS: The results of these limited observational studies indicate that, at least in humans, genes play a marginal role in determining TMAO levels and that any genetic effects are relatively weak and complex. Variation in diet or the repertoire of gut microbiota may be more important determinants of plasma TMAO levels in mice and humans, which should be investigated in future studies.


Assuntos
Carnitina/metabolismo , Colina/metabolismo , Estudo de Associação Genômica Ampla , Metilaminas/sangue , Idoso , Animais , Proteínas de Transporte de Cátions/genética , Cromossomos Humanos Par 1 , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Família Multigênica , Oxigenases/genética , Polimorfismo de Nucleotídeo Único
17.
Diabetologia ; 57(7): 1391-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24728128

RESUMO

AIMS/HYPOTHESIS: MTNR1B is a type 2 diabetes susceptibility locus associated with cross-sectional measures of insulin secretion. We hypothesised that variation in MTNR1B contributes to the absolute level of a diabetes-related trait, temporal rate of change in that trait, or both. METHODS: We tested rs10830963 for association with cross-sectional diabetes-related traits in up to 1,383 individuals or with rate of change in the same phenotypes over a 3-5 year follow-up in up to 374 individuals from the family-based BetaGene study of Mexican Americans. RESULTS: rs10830963 was associated cross-sectionally with fasting glucose (p = 0.0069), acute insulin response (AIR; p = 0.0013), disposition index (p = 0.00078), glucose effectiveness (p = 0.018) and gestational diabetes mellitus (OR 1.48; p = 0.012), but not with OGTT 30 min Δinsulin (the difference between the 30 min and fasting plasma insulin concentration) or 30 min insulin-based disposition index. rs10830963 was also associated with rate of change in fasting glucose (p = 0.043), OGTT 30 min Δinsulin (p = 0.01) and AIR (p = 0.037). There was no evidence for an association with the rate of change in beta cell compensation for insulin resistance. CONCLUSIONS/INTERPRETATION: We conclude that variation in MTNR1B contributes to the absolute level of insulin secretion but not to differences in the temporal rate of change in insulin secretion. The observed association with the rate of change in insulin secretion reflects the natural physiological response to changes in underlying insulin sensitivity and is not a direct effect of the variant.


Assuntos
Diabetes Gestacional/genética , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Americanos Mexicanos/genética , Polimorfismo de Nucleotídeo Único , Receptor MT2 de Melatonina/genética , Adulto , Glicemia/metabolismo , Estudos Transversais , Diabetes Gestacional/metabolismo , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/genética , Masculino , Pessoa de Meia-Idade , Gravidez , Adulto Jovem
18.
J Biol Chem ; 288(17): 11940-8, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23508960

RESUMO

Aspirin is rapidly hydrolyzed within erythrocytes by a heterodimer of PAFAH1b2/PAFAH1b3 but also in plasma by an unidentified activity. Hydrolysis in both compartments was variable, with a 12-fold variation in plasma among 2226 Cleveland Clinic GeneBank patients. Platelet inhibition by aspirin was suppressed in plasma that rapidly hydrolyzed aspirin. Plasma aspirin hydrolysis was significantly higher in patients with coronary artery disease compared with control subjects (16.5 ± 4.4 versus 15.1 ± 3.7 nmol/ml/min; p = 3.4 × 10(-8)). A genome-wide association study of 2054 GeneBank subjects identified a single locus immediately adjacent to the BCHE (butyrylcholinesterase) gene associated with plasma aspirin hydrolytic activity (lead SNP, rs6445035; p = 9.1 × 10(-17)). However, its penetrance was low, and plasma from an individual with an inactivating mutation in BCHE still effectively hydrolyzed aspirin. A second aspirin hydrolase was identified in plasma, the purification of which showed it to be homomeric PAFAH1b2. This is distinct from the erythrocyte PAFAH1b2/PAFAH1b3 heterodimer. Inhibitors showed that both butyrylcholinesterase (BChE) and PAFAH1b2 contribute to aspirin hydrolysis in plasma, with variation primarily reflecting non-genetic variation of BChE activity. Therefore, aspirin is hydrolyzed in plasma by two enzymes, BChE and a new extracellular form of platelet-activating factor acetylhydrolase, PAFAH1b2. Hydrolytic effectiveness varies widely primarily from non-genetic variation of BChE activity that affects aspirin bioavailability in blood and the ability of aspirin to inhibit platelet aggregation.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , Aspirina/farmacocinética , Plaquetas/enzimologia , Butirilcolinesterase/sangue , Proteínas Associadas aos Microtúbulos/sangue , Plasma/enzimologia , Inibidores da Agregação Plaquetária/farmacocinética , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Aspirina/farmacologia , Butirilcolinesterase/genética , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/enzimologia , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Humanos , Hidrólise , Proteínas Associadas aos Microtúbulos/genética , Inibidores da Agregação Plaquetária/farmacologia , Polimorfismo de Nucleotídeo Único
19.
PLoS Genet ; 7(2): e1001300, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21347282

RESUMO

Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia.


Assuntos
HDL-Colesterol/genética , LDL-Colesterol/genética , Doença das Coronárias/genética , Estudo de Associação Genômica Ampla , Hipertensão/genética , Negro ou Afro-Americano/genética , Dessaturase de Ácido Graxo Delta-5 , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Estados Unidos , População Branca
20.
Metabolites ; 14(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535334

RESUMO

The role of gut microbe-derived metabolites in the development of metabolic syndrome (MetS) remains unclear. This study aimed to evaluate the associations of gut microbe-derived metabolites and MetS traits in the cross-sectional Metabolic Syndrome In Men (METSIM) study. The sample included 10,194 randomly related men (age 57.65 ± 7.12 years) from Eastern Finland. Levels of 35 metabolites were tested for associations with 13 MetS traits using lasso and stepwise regression. Significant associations were observed between multiple MetS traits and 32 metabolites, three of which exhibited particularly robust associations. N-acetyltryptophan was positively associated with Homeostatic Model Assessment for Insulin Resistant (HOMA-IR) (ß = 0.02, p = 0.033), body mass index (BMI) (ß = 0.025, p = 1.3 × 10-16), low-density lipoprotein cholesterol (LDL-C) (ß = 0.034, p = 5.8 × 10-10), triglyceride (0.087, p = 1.3 × 10-16), systolic (ß = 0.012, p = 2.5 × 10-6) and diastolic blood pressure (ß = 0.011, p = 3.4 × 10-6). In addition, 3-(4-hydroxyphenyl) lactate yielded the strongest positive associations among all metabolites, for example, with HOMA-IR (ß = 0.23, p = 4.4 × 10-33), and BMI (ß = 0.097, p = 5.1 × 10-52). By comparison, 3-aminoisobutyrate was inversely associated with HOMA-IR (ß = -0.19, p = 3.8 × 10-51) and triglycerides (ß = -0.12, p = 5.9 × 10-36). Mendelian randomization analyses did not provide evidence that the observed associations with these three metabolites represented causal relationships. We identified significant associations between several gut microbiota-derived metabolites and MetS traits, consistent with the notion that gut microbes influence metabolic homeostasis, beyond traditional risk factors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa