Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 159(5): 1188-1199, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25416954

RESUMO

Glutamine is the primary metabolite of nitrogen assimilation from inorganic nitrogen sources in microorganisms and plants. The ability to monitor cellular nitrogen status is pivotal for maintaining metabolic homeostasis and sustaining growth. The present study identifies a glutamine-sensing mechanism common in the entire plant kingdom except Brassicaceae. The plastid-localized PII signaling protein controls, in a glutamine-dependent manner, the key enzyme of the ornithine synthesis pathway, N-acetyl-l-glutamate kinase (NAGK), that leads to arginine and polyamine formation. Crystal structures reveal that the plant-specific C-terminal extension of PII, which we term the Q loop, forms a low-affinity glutamine-binding site. Glutamine binding alters PII conformation, promoting interaction and activation of NAGK. The binding motif is highly conserved in plants except Brassicaceae. A functional Q loop restores glutamine sensing in a recombinant Arabidopsis thaliana PII protein, demonstrating the modular concept of the glutamine-sensing mechanism adopted by PII proteins during the evolution of plant chloroplasts.


Assuntos
Glutamina/metabolismo , Plantas/metabolismo , Sequência de Aminoácidos , Chlamydomonas reinhardtii/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nitrogênio/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/química , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Plantas/classificação , Alinhamento de Sequência
2.
Nucleic Acids Res ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864377

RESUMO

Histones are essential for genome compaction and transcription regulation in eukaryotes, where they assemble into octamers to form the nucleosome core. In contrast, archaeal histones assemble into dimers that form hypernucleosomes upon DNA binding. Although histone homologs have been identified in bacteria recently, their DNA-binding characteristics remain largely unexplored. Our study reveals that the bacterial histone HBb (Bd0055) is indispensable for the survival of Bdellovibrio bacteriovorus, suggesting critical roles in DNA organization and gene regulation. By determining crystal structures of free and DNA-bound HBb, we unveil its distinctive dimeric assembly, diverging from those of eukaryotic and archaeal histones, while also elucidating how it binds and bends DNA through interaction interfaces reminiscent of eukaryotic and archaeal histones. Building on this, by employing various biophysical and biochemical approaches, we further substantiated the ability of HBb to bind and compact DNA by bending in a sequence-independent manner. Finally, using DNA affinity purification and sequencing, we reveal that HBb binds along the entire genomic DNA of B. bacteriovorus without sequence specificity. These distinct DNA-binding properties of bacterial histones, showcasing remarkable similarities yet significant differences from their archaeal and eukaryotic counterparts, highlight the diverse roles histones play in DNA organization across all domains of life.


Histones, traditionally known for organizing and regulating DNA in eukaryotes and archaea, have recently been discovered in bacteria, opening up a new frontier in our understanding of genome organization across the domains of life. Our study investigates the largely unexplored DNA-binding properties of bacterial histones, focusing on HBb in Bdellovibrio bacteriovorus. We reveal that HBb is essential for bacterial survival and exhibits DNA-binding properties similar to archaeal and eukaryotic histones. However, unlike eukaryotic and archaeal histones, which wrap DNA, HBb bends DNA without sequence specificity. This work not only broadens our understanding of DNA organization across different life forms but also suggests that bacterial histones may have diverse roles in genome organization.

3.
Proc Natl Acad Sci U S A ; 120(8): e2205882120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800386

RESUMO

The PII superfamily consists of widespread signal transduction proteins found in all domains of life. In addition to canonical PII proteins involved in C/N sensing, structurally similar PII-like proteins evolved to fulfill diverse, yet poorly understood cellular functions. In cyanobacteria, the bicarbonate transporter SbtA is co-transcribed with the conserved PII-like protein, SbtB, to augment intracellular inorganic carbon levels for efficient CO2 fixation. We identified SbtB as a sensor of various adenine nucleotides including the second messenger nucleotides cyclic AMP (cAMP) and c-di-AMP. Moreover, many SbtB proteins possess a C-terminal extension with a disulfide bridge of potential redox-regulatory function, which we call R-loop. Here, we reveal an unusual ATP/ADP apyrase (diphosphohydrolase) activity of SbtB that is controlled by the R-loop. We followed the sequence of hydrolysis reactions from ATP over ADP to AMP in crystallographic snapshots and unravel the structural mechanism by which changes of the R-loop redox state modulate apyrase activity. We further gathered evidence that this redox state is controlled by thioredoxin, suggesting that it is generally linked to cellular metabolism, which is supported by physiological alterations in site-specific mutants of the SbtB protein. Finally, we present a refined model of how SbtB regulates SbtA activity, in which both the apyrase activity and its redox regulation play a central role. This highlights SbtB as a central switch point in cyanobacterial cell physiology, integrating not only signals from the energy state (adenyl-nucleotide binding) and the carbon supply via cAMP binding but also from the day/night status reported by the C-terminal redox switch.


Assuntos
Apirase , Cianobactérias , Apirase/genética , Apirase/metabolismo , Bicarbonatos/metabolismo , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Cianobactérias/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo
4.
J Biol Chem ; 299(12): 105387, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890783

RESUMO

The expression of virulence factors essential for the invasion of host cells by Salmonella enterica is tightly controlled by a network of transcription regulators. The AraC/XylS transcription factor HilD is the main integration point of environmental signals into this regulatory network, with many factors affecting HilD activity. Long-chain fatty acids, which are highly abundant throughout the host intestine, directly bind to and repress HilD, acting as environmental cues to coordinate virulence gene expression. The regulatory protein HilE also negatively regulates HilD activity, through a protein-protein interaction. Both of these regulators inhibit HilD dimerization, preventing HilD from binding to target DNA. We investigated the structural basis of these mechanisms of HilD repression. Long-chain fatty acids bind to a conserved pocket in HilD, in a comparable manner to that reported for other AraC/XylS regulators, whereas HilE forms a stable heterodimer with HilD by binding to the HilD dimerization interface. Our results highlight two distinct, mutually exclusive mechanisms by which HilD activity is repressed, which could be exploited for the development of new antivirulence leads.


Assuntos
Proteínas de Bactérias , Intestinos , Salmonella typhimurium , Proteínas de Bactérias/metabolismo , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Intestinos/metabolismo , Intestinos/microbiologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidade , Virulência , Animais , Infecções por Salmonella/metabolismo , Infecções por Salmonella/microbiologia
5.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33688044

RESUMO

Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.


Assuntos
Proteínas Arqueais/metabolismo , Ligases/metabolismo , Methanocaldococcus/enzimologia , Methanosarcina/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Cristalografia por Raios X , Complexo de Endopeptidases do Proteassoma/química , Conformação Proteica , Especificidade por Substrato
6.
Proteins ; 91(12): 1571-1599, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37493353

RESUMO

We present an in-depth analysis of selected CASP15 targets, focusing on their biological and functional significance. The authors of the structures identify and discuss key protein features and evaluate how effectively these aspects were captured in the submitted predictions. While the overall ability to predict three-dimensional protein structures continues to impress, reproducing uncommon features not previously observed in experimental structures is still a challenge. Furthermore, instances with conformational flexibility and large multimeric complexes highlight the need for novel scoring strategies to better emphasize biologically relevant structural regions. Looking ahead, closer integration of computational and experimental techniques will play a key role in determining the next challenges to be unraveled in the field of structural molecular biology.


Assuntos
Biologia Computacional , Proteínas , Conformação Proteica , Modelos Moleculares , Biologia Computacional/métodos , Proteínas/química
7.
Biochem Biophys Res Commun ; 646: 30-35, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36701892

RESUMO

In targeted protein degradation, immunomodulatory drugs (IMiDs) or cereblon (CRBN) E3 ligase modulatory drugs (CELMoDs) recruit neo-substrate proteins to the E3 ubiquitin ligase receptor CRBN for ubiquitination and subsequent proteasomal degradation. While the structural basis of this mechanism is generally understood, we have only recently described the recognition mode of the natural CRBN degron. In this communication, we reveal that the IMiD- or CELMoD-mediated binding of neo-substrates closely mimics the recognition of natural degrons. In crystal structures, we identify a conserved binding mode for natural degron peptides with an elaborate hydrogen bonding network involving the backbone of each of the six C-terminal degron residues, without the involvement of side chains. In a structural comparison, we show that neo-substrates recruited by IMiDs or CELMoDs emulate every single hydrogen bond of this network and thereby explain the origins of the largely sequence-independent recognition of neo-substrates. Our results imply that the V388I substitution in CRBN does not impair natural degron recognition and complete the structural basis for the rational design of CRBN effectors.


Assuntos
Agentes de Imunomodulação , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
8.
J Chem Inf Model ; 63(21): 6925-6937, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37917529

RESUMO

The Nrf2 transcription factor is a master regulator of the cellular response to oxidative stress, and Keap1 is its primary negative regulator. Activating Nrf2 by inhibiting the Nrf2-Keap1 protein-protein interaction has shown promise for treating cancer and inflammatory diseases. A loop derived from Nrf2 has been shown to inhibit Keap1 selectively, especially when cyclized, but there are no reliable design methods for predicting an optimal macrocyclization strategy. In this work, we employed all-atom, explicit-solvent molecular dynamics simulations with enhanced sampling methods to predict the relative degree of preorganization for a series of peptides cyclized with a set of bis-thioether "staples". We then correlated these predictions to experimentally measured binding affinities for Keap1 and crystal structures of the cyclic peptides bound to Keap1. This work showcases a computational method for designing cyclic peptides by simulating and comparing their entire solution-phase ensembles, providing key insights into designing cyclic peptides as selective inhibitors of protein-protein interactions.


Assuntos
Fator 2 Relacionado a NF-E2 , Peptídeos Cíclicos , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligação Proteica , Fator 2 Relacionado a NF-E2/metabolismo , Peptídeos/química
9.
Biochem Biophys Res Commun ; 637: 66-72, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375252

RESUMO

Cereblon (CRBN) is a ubiquitously expressed E3 ligase substrate receptor and a key player in pharmaceutical targeted protein degradation. Despite substantial insight gained into its chemical ligand space that is exploited in small-molecule protein degraders, its cellular role and native mechanism of substrate recognition remained elusive so far. In this communication, we report the discovery of C-terminal aspartimide and aminoglutarimide residues as natural degron motifs that are recognized by CRBN with high specificity. These C-terminal cyclic imides are known to form in ageing proteins as a result of spontaneous chain breaks after an attack of an asparagine or glutamine side chain amide on the adjacent peptide bond, and thereby mark potentially malfunctional protein fragments. In crystal structures, we uncover that these C-terminal cyclic imides are bound in the same fashion as small-molecule CRBN modulators, and that the residues preceding the cyclic terminus contribute to the interaction with a sequence-unspecific backbone hydrogen bonding pattern with strictly conserved residues in CRBN. We postulate that C-terminal aspartimide and aminoglutarimide residues resulting from chain breaks are largely underappreciated protein damages and represent the native degrons of CRBN.


Assuntos
Imidas , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ligantes
10.
Nat Chem Biol ; 16(9): 973-978, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32632294

RESUMO

The AROM complex is a multifunctional metabolic machine with ten enzymatic domains catalyzing the five central steps of the shikimate pathway in fungi and protists. We determined its crystal structure and catalytic behavior, and elucidated its conformational space using a combination of experimental and computational approaches. We derived this space in an elementary approach, exploiting an abundance of conformational information from its monofunctional homologs in the Protein Data Bank. It demonstrates how AROM is optimized for spatial compactness while allowing for unrestricted conformational transitions and a decoupled functioning of its individual enzymatic entities. With this architecture, AROM poses a tractable test case for the effects of active site proximity on the efficiency of both natural metabolic systems and biotechnological pathway optimization approaches. We show that a mere colocalization of enzymes is not sufficient to yield a detectable improvement of metabolic throughput.


Assuntos
Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferase/química , 3-Fosfoshikimato 1-Carboxiviniltransferase/genética , 3-Fosfoshikimato 1-Carboxiviniltransferase/metabolismo , Acanthamoeba castellanii/química , Domínio Catalítico , Chaetomium/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/genética , Fósforo-Oxigênio Liases/química , Fósforo-Oxigênio Liases/genética , Fósforo-Oxigênio Liases/metabolismo , Conformação Proteica , Domínios Proteicos , Espalhamento a Baixo Ângulo , Ácido Chiquímico/metabolismo , Toxoplasma/química , Difração de Raios X
11.
Biochem J ; 478(10): 1885-1890, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-34029366

RESUMO

Proteins are the essential agents of all living systems. Even though they are synthesized as linear chains of amino acids, they must assume specific three-dimensional structures in order to manifest their biological activity. These structures are fully specified in their amino acid sequences - and therefore in the nucleotide sequences of their genes. However, the relationship between sequence and structure, known as the protein folding problem, has remained elusive for half a century, despite sustained efforts. To measure progress on this problem, a series of doubly blind, biennial experiments called CASP (critical assessment of structure prediction) were established in 1994. We were part of the assessment team for the most recent CASP experiment, CASP14, where we witnessed an astonishing breakthrough by DeepMind, the leading artificial intelligence laboratory of Alphabet Inc. The models filed by DeepMind's structure prediction team using the program AlphaFold2 were often essentially indistinguishable from experimental structures, leading to a consensus in the community that the structure prediction problem for single protein chains has been solved. Here, we will review the path to CASP14, outline the method employed by AlphaFold2 to the extent revealed, and discuss the implications of this breakthrough for the life sciences.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Archaeoglobus fulgidus/metabolismo , Inteligência Artificial , Biologia Computacional/métodos , Software , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína
12.
J Enzyme Inhib Med Chem ; 37(1): 527-530, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35220840

RESUMO

The advent of proteolysis-targeting chimaeras (PROTACs) mandates that new ligands for the recruitment of E3 ligases are discovered. The traditional immunomodulatory drugs (IMiDs) such as thalidomide and its analogues (all based on the phthalimide glutarimide core) bind to Cereblon, the substrate receptor of the CRL4ACRBN E3 ligase. We designed a thalidomide analogue in which the phthalimide moiety was replaced with benzotriazole, using an innovative synthesis strategy. Compared to thalidomide, the resulting "benzotriazolo thalidomide" has a similar binding mode, but improved properties, as revealed in crystallographic analyses, affinity assays and cell culture.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Triazóis/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Ubiquitina-Proteína Ligases/metabolismo
13.
Proteins ; 89(12): 1687-1699, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34218458

RESUMO

The application of state-of-the-art deep-learning approaches to the protein modeling problem has expanded the "high-accuracy" category in CASP14 to encompass all targets. Building on the metrics used for high-accuracy assessment in previous CASPs, we evaluated the performance of all groups that submitted models for at least 10 targets across all difficulty classes, and judged the usefulness of those produced by AlphaFold2 (AF2) as molecular replacement search models with AMPLE. Driven by the qualitative diversity of the targets submitted to CASP, we also introduce DipDiff as a new measure for the improvement in backbone geometry provided by a model versus available templates. Although a large leap in high-accuracy is seen due to AF2, the second-best method in CASP14 out-performed the best in CASP13, illustrating the role of community-based benchmarking in the development and evolution of the protein structure prediction field.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Software , Biologia Computacional/métodos , Biologia Computacional/normas , Bases de Dados de Proteínas , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de Proteína
14.
Proteins ; 89(12): 1752-1769, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34387010

RESUMO

The assessment of CASP models for utility in molecular replacement is a measure of their use in a valuable real-world application. In CASP7, the metric for molecular replacement assessment involved full likelihood-based molecular replacement searches; however, this restricted the assessable targets to crystal structures with only one copy of the target in the asymmetric unit, and to those where the search found the correct pose. In CASP10, full molecular replacement searches were replaced by likelihood-based rigid-body refinement of models superimposed on the target using the LGA algorithm, with the metric being the refined log-likelihood-gain (LLG) score. This enabled multi-copy targets and very poor models to be evaluated, but a significant further issue remained: the requirement of diffraction data for assessment. We introduce here the relative-expected-LLG (reLLG), which is independent of diffraction data. This reLLG is also independent of any crystal form, and can be calculated regardless of the source of the target, be it X-ray, NMR or cryo-EM. We calibrate the reLLG against the LLG for targets in CASP14, showing that it is a robust measure of both model and group ranking. Like the LLG, the reLLG shows that accurate coordinate error estimates add substantial value to predicted models. We find that refinement by CASP groups can often convert an inadequate initial model into a successful MR search model. Consistent with findings from others, we show that the AlphaFold2 models are sufficiently good, and reliably so, to surpass other current model generation strategies for attempting molecular replacement phasing.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas , Software , Algoritmos , Biologia Computacional , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Proteínas/química , Proteínas/metabolismo
15.
Proteins ; 89(12): 1633-1646, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34449113

RESUMO

Critical assessment of structure prediction (CASP) conducts community experiments to determine the state of the art in computing protein structure from amino acid sequence. The process relies on the experimental community providing information about not yet public or about to be solved structures, for use as targets. For some targets, the experimental structure is not solved in time for use in CASP. Calculated structure accuracy improved dramatically in this round, implying that models should now be much more useful for resolving many sorts of experimental difficulties. To test this, selected models for seven unsolved targets were provided to the experimental groups. These models were from the AlphaFold2 group, who overall submitted the most accurate predictions in CASP14. Four targets were solved with the aid of the models, and, additionally, the structure of an already solved target was improved. An a posteriori analysis showed that, in some cases, models from other groups would also be effective. This paper provides accounts of the successful application of models to structure determination, including molecular replacement for X-ray crystallography, backbone tracing and sequence positioning in a cryo-electron microscopy structure, and correction of local features. The results suggest that, in future, there will be greatly increased synergy between computational and experimental approaches to structure determination.


Assuntos
Biologia Computacional/métodos , Microscopia Crioeletrônica , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Conformação Proteica , Software
16.
Proteins ; 89(12): 1647-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34561912

RESUMO

The biological and functional significance of selected Critical Assessment of Techniques for Protein Structure Prediction 14 (CASP14) targets are described by the authors of the structures. The authors highlight the most relevant features of the target proteins and discuss how well these features were reproduced in the respective submitted predictions. The overall ability to predict three-dimensional structures of proteins has improved remarkably in CASP14, and many difficult targets were modeled with impressive accuracy. For the first time in the history of CASP, the experimentalists not only highlighted that computational models can accurately reproduce the most critical structural features observed in their targets, but also envisaged that models could serve as a guidance for further studies of biologically-relevant properties of proteins.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Software , Sequência de Aminoácidos , Biologia Computacional , Microscopia Crioeletrônica , Cristalografia por Raios X , Análise de Sequência de Proteína
17.
Biochem Biophys Res Commun ; 534: 67-72, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310190

RESUMO

Cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, is a target of thalidomide and thalidomide-derived immunomodulatory drugs (IMiDs). The binding of these IMiDs to CRBN alters the substrate specificity of the ligase, thereby mediating multiple effects that are exploited in cancer therapy. However, to date, it is not clear which other possible targets might be involved in the efficacy of IMiDs. One especially prominent effect of a number of thalidomide analogs is their ability to inhibit angiogenesis, which is typically enhanced in fluorinated analogs. So far, the involvement of CRBN in antiangiogenic effects is under debate. Here, starting from a systematic set of thalidomide analogs and employing a quantitative in vitro CRBN-binding assay, we study the correlation of fluorination, CRBN binding and antiangiogenic effects. We clearly identify fluorination to correlate both with CRBN binding affinity and with antiangiogenic effects, but do not find a correlation between the latter two phenomena, indicating that the main target for the antiangiogenic effects of thalidomide analogs still remains to be identified.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inibidores da Angiogênese/farmacologia , Fatores Imunológicos/metabolismo , Fatores Imunológicos/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Inibidores da Angiogênese/química , Animais , Aorta/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Halogenação , Células Endoteliais da Veia Umbilical Humana , Humanos , Fatores Imunológicos/química , Masculino , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Talidomida/análogos & derivados
18.
Blood ; 134(14): 1159-1175, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31366618

RESUMO

Hematopoietic transcription factor LIM domain only 2 (LMO2), a member of the TAL1 transcriptional complex, plays an essential role during early hematopoiesis and is frequently activated in T-cell acute lymphoblastic leukemia (T-ALL) patients. Here, we demonstrate that LMO2 is activated by deacetylation on lysine 74 and 78 via the nicotinamide phosphoribosyltransferase (NAMPT)/sirtuin 2 (SIRT2) pathway. LMO2 deacetylation enables LMO2 to interact with LIM domain binding 1 and activate the TAL1 complex. NAMPT/SIRT2-mediated activation of LMO2 by deacetylation appears to be important for hematopoietic differentiation of induced pluripotent stem cells and blood formation in zebrafish embryos. In T-ALL, deacetylated LMO2 induces expression of TAL1 complex target genes HHEX and NKX3.1 as well as LMO2 autoregulation. Consistent with this, inhibition of NAMPT or SIRT2 suppressed the in vitro growth and in vivo engraftment of T-ALL cells via diminished LMO2 deacetylation. This new molecular mechanism may provide new therapeutic possibilities in T-ALL and may contribute to the development of new methods for in vitro generation of blood cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Hematopoese , Proteínas com Domínio LIM/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Acetilação , Animais , Células Cultivadas , Células HEK293 , Humanos , Leucopoese , Camundongos , Modelos Moleculares , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Peixe-Zebra
19.
Bioessays ; 41(5): e1800237, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30970167

RESUMO

The proteasome family of proteases comprises oligomeric assemblies of very different symmetry. In different sizes, it features ring-like oligomers with dihedral symmetry that allow the stacking of further rings of regulatory subunits as observed in the modular proteasome system, but also less symmetric helical assemblies. Comprehensive sequence and structural analyses of proteasome homologs reveal a parsimonious scenario of how symmetry may have emerged from a monomeric ancestral precursor and how it may have evolved throughout the proteasome family. The four characterized representatives-ancestral ß subunit (Anbu), HslV, betaproteobacterial proteasome homolog (BPH), and the 20S proteasome-are outlasting cornerstones in the family's evolutionary history, each marking a transition in symmetry. This article contextualizes the evolutionary and functional key aspects of these symmetry transitions, explaining how they facilitated the diversification and concurrent evolution of independent proteolytic systems side by side, each with its customized network of auxiliary interactors.


Assuntos
Evolução Molecular , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Multimerização Proteica
20.
Proc Natl Acad Sci U S A ; 115(21): E4861-E4869, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29735650

RESUMO

Cyanobacteria are phototrophic prokaryotes that evolved oxygenic photosynthesis ∼2.7 billion y ago and are presently responsible for ∼10% of total global photosynthetic production. To cope with the evolutionary pressure of dropping ambient CO2 concentrations, they evolved a CO2-concentrating mechanism (CCM) to augment intracellular inorganic carbon (Ci) levels for efficient CO2 fixation. However, how cyanobacteria sense the fluctuation in Ci is poorly understood. Here we present biochemical, structural, and physiological insights into SbtB, a unique PII-like signaling protein, which provides new insights into Ci sensing. SbtB is highly conserved in cyanobacteria and is coexpressed with CCM genes. The SbtB protein from the cyanobacterium Synechocystis sp. PCC 6803 bound a variety of adenosine nucleotides, including the second messenger cAMP. Cocrystal structures unraveled the individual binding modes of trimeric SbtB with AMP and cAMP. The nucleotide-binding pocket is located between the subunit clefts of SbtB, perfectly matching the structure of canonical PII proteins. This clearly indicates that proteins of the PII superfamily arose from a common ancestor, whose structurally conserved nucleotide-binding pocket has evolved to sense different adenyl nucleotides for various signaling functions. Moreover, we provide physiological and biochemical evidence for the involvement of SbtB in Ci acclimation. Collectively, our results suggest that SbtB acts as a Ci sensor protein via cAMP binding, highlighting an evolutionarily conserved role for cAMP in signaling the cellular carbon status.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Compostos Inorgânicos de Carbono/metabolismo , Cianobactérias/metabolismo , AMP Cíclico/metabolismo , Proteína Fosfatase 2/metabolismo , Aclimatação , Cristalografia por Raios X , Cianobactérias/crescimento & desenvolvimento , Fotossíntese , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa