Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int ; 105(4): 799-811, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38096951

RESUMO

Sporadic cases of apolipoprotein A-IV medullary amyloidosis have been reported. Here we describe five families found to have autosomal dominant medullary amyloidosis due to two different pathogenic APOA4 variants. A large family with autosomal dominant chronic kidney disease (CKD) and bland urinary sediment underwent whole genome sequencing with identification of a chr11:116692578 G>C (hg19) variant encoding the missense mutation p.L66V of the ApoA4 protein. We identified two other distantly related families from our registry with the same variant and two other distantly related families with a chr11:116693454 C>T (hg19) variant encoding the missense mutation p.D33N. Both mutations are unique to affected families, evolutionarily conserved and predicted to expand the amyloidogenic hotspot in the ApoA4 structure. Clinically affected individuals suffered from CKD with a bland urinary sediment and a mean age for kidney failure of 64.5 years. Genotyping identified 48 genetically affected individuals; 44 individuals had an estimated glomerular filtration rate (eGFR) under 60 ml/min/1.73 m2, including all 25 individuals with kidney failure. Significantly, 11 of 14 genetically unaffected individuals had an eGFR over 60 ml/min/1.73 m2. Fifteen genetically affected individuals presented with higher plasma ApoA4 concentrations. Kidney pathologic specimens from four individuals revealed amyloid deposits limited to the medulla, with the mutated ApoA4 identified by mass-spectrometry as the predominant amyloid constituent in all three available biopsies. Thus, ApoA4 mutations can cause autosomal dominant medullary amyloidosis, with marked amyloid deposition limited to the kidney medulla and presenting with autosomal dominant CKD with a bland urinary sediment. Diagnosis relies on a careful family history, APOA4 sequencing and pathologic studies.


Assuntos
Amiloidose , Apolipoproteínas A , Nefrite Intersticial , Insuficiência Renal Crônica , Humanos , Pessoa de Meia-Idade , Nefrite Intersticial/diagnóstico , Nefrite Intersticial/genética , Nefrite Intersticial/complicações , Mutação , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/complicações
2.
Kidney Int ; 101(2): 349-359, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34560138

RESUMO

Amyloid A amyloidosis is a serious clinical condition resulting from the systemic deposition of amyloid A originating from serum amyloid A proteins with the kidneys being the most commonly and earliest affected organ. Previously described amyloid A amyloidosis is linked to increased production and deposition of serum amyloid A proteins secondary to inflammatory conditions arising from infectious, metabolic, or genetic causes. Here we describe a family with primary amyloid A amyloidosis due to a chr11:18287683 T>C (human genome version19) mutation in the SAA1 promoter linked to the amyloidogenic SAA1.1 haplotype. This condition leads to a doubling of the basal SAA1 promoter activity and sustained elevation of serum amyloid A levels that segregated in an autosomal dominant pattern in 12 genetically affected and in none of six genetically unaffected relatives, yielding a statistically significant logarithm of odds (LOD) score over 5. Affected individuals developed proteinuria, chronic kidney disease and systemic deposition of amyloid composed specifically of the SAA1.1 isoform. Tocilizumab (a monoclonal antibody against the interleukin-6 receptor) had a beneficial effect when prescribed early in the disease course. Idiopathic forms represent a significant and increasing proportion (15-20%) of all diagnosed cases of amyloid A amyloidosis. Thus, genetic screening of the SAA1 promoter should be pursued in individuals with amyloid A amyloidosis and no systemic inflammation, especially if there is a positive family history.


Assuntos
Amiloidose , Amiloidose/complicações , Humanos , Mutação , Regiões Promotoras Genéticas , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo
3.
Am J Nephrol ; 52(5): 378-387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34098564

RESUMO

INTRODUCTION: Patients with ADTKD-MUC1 have one allele producing normal mucin-1 (MUC1) and one allele producing mutant MUC1, which remains intracellular. We hypothesized that ADTKD-MUC1 patients, who have only 1 secretory-competent wild-type MUC1 allele, should exhibit decreased plasma mucin-1 (MUC1) levels. To test this hypothesis, we repurposed the serum CA15-3 assay used to measure MUC1 in breast cancer to measure plasma MUC1 levels in ADTKD-MUC1. METHODS: This cross-sectional study analyzed CA15-3 levels in a reference population of 6,850 individuals, in 85 individuals with ADTKD-MUC1, and in a control population including 135 individuals with ADTKD-UMOD and 114 healthy individuals. RESULTS: Plasma CA15-3 levels (mean ± standard deviation) were 8.6 ± 4.3 U/mL in individuals with ADTKD-MUC1 and 14.6 ± 5.6 U/mL in controls (p < 0.001). While there was a significant difference in mean CA15-3 levels, there was substantial overlap between the 2 groups. Plasma CA15-3 levels were <5 U/mL in 22% of ADTKD-MUC1 patients, in 0/249 controls, and in 1% of the reference population. Plasma CA15-3 levels were >20 U/mL in 1/85 ADTKD-MUC1 patients, in 18% of control individuals, and in 25% of the reference population. Segregation of plasma CA15-3 levels by the rs4072037 genotype did not significantly improve differentiation between affected and unaffected individuals. CA15-3 levels were minimally affected by gender and estimated glomerular filtration rate. DISCUSSION/CONCLUSIONS: Plasma CA15-3 levels in ADTKD-MUC1 patients are approximately 40% lower than levels in healthy individuals, though there is significant overlap between groups. Further investigations need to be performed to see if plasma CA15-3 levels would be useful in diagnosis, prognosis, or assessing response to new therapies in this disorder.


Assuntos
Mucina-1/sangue , Nefrite Intersticial/sangue , Uromodulina/genética , Adulto , Idoso , Alelos , Biomarcadores/sangue , Estudos de Casos e Controles , Estudos Transversais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-1/genética , Mutação , Nefrite Intersticial/genética , Prognóstico
4.
Kidney Int ; 98(6): 1589-1604, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32750457

RESUMO

There have been few clinical or scientific reports of autosomal dominant tubulointerstitial kidney disease due to REN mutations (ADTKD-REN), limiting characterization. To further study this, we formed an international cohort characterizing 111 individuals from 30 families with both clinical and laboratory findings. Sixty-nine individuals had a REN mutation in the signal peptide region (signal group), 27 in the prosegment (prosegment group), and 15 in the mature renin peptide (mature group). Signal group patients were most severely affected, presenting at a mean age of 19.7 years, with the prosegment group presenting at 22.4 years, and the mature group at 37 years. Anemia was present in childhood in 91% in the signal group, 69% prosegment, and none of the mature group. REN signal peptide mutations reduced hydrophobicity of the signal peptide, which is necessary for recognition and translocation across the endoplasmic reticulum, leading to aberrant delivery of preprorenin into the cytoplasm. REN mutations in the prosegment led to deposition of prorenin and renin in the endoplasmic reticulum-Golgi intermediate compartment and decreased prorenin secretion. Mutations in mature renin led to deposition of the mutant prorenin in the endoplasmic reticulum, similar to patients with ADTKD-UMOD, with a rate of progression to end stage kidney disease (63.6 years) that was significantly slower vs. the signal (53.1 years) and prosegment groups (50.8 years) (significant hazard ratio 0.367). Thus, clinical and laboratory studies revealed subtypes of ADTKD-REN that are pathophysiologically, diagnostically, and clinically distinct.


Assuntos
Anemia , Doenças Renais Policísticas , Adulto , Criança , Estudos de Coortes , Feminino , Humanos , Masculino , Mutação , Doenças Renais Policísticas/genética , Renina/genética , Adulto Jovem
5.
Genet Med ; 22(1): 142-149, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31337885

RESUMO

PURPOSE: To evaluate self-referral from the Internet for genetic diagnosis of several rare inherited kidney diseases. METHODS: Retrospective study from 1996 to 2017 analyzing data from an academic referral center specializing in autosomal dominant tubulointerstitial kidney disease (ADTKD). Individuals were referred by academic health-care providers (HCPs) nonacademic HCPs, or directly by patients/families. RESULTS: Over 21 years, there were 665 referrals, with 176 (27%) directly from families, 269 (40%) from academic HCPs, and 220 (33%) from nonacademic HCPs. Forty-two (24%) direct family referrals had positive genetic testing versus 73 (27%) families from academic HCPs and 55 (25%) from nonacademic HCPs (P = 0.72). Ninety-nine percent of direct family contacts were white and resided in zip code locations with a mean median income of $77,316 ± 34,014 versus US median income $49,445. CONCLUSION: Undiagnosed families with Internet access bypassed their physicians and established direct contact with an academic center specializing in inherited kidney disease to achieve a diagnosis. Twenty-five percent of all families diagnosed with ADTKD were the result of direct family referral and would otherwise have been undiagnosed. If patients suspect a rare disorder that is undiagnosed by their physicians, actively pursuing self-diagnosis using the Internet can be successful. Centers interested in rare disorders should consider improving direct access to families.


Assuntos
Nefropatias/diagnóstico , Doenças Raras/diagnóstico , Encaminhamento e Consulta/classificação , Adulto , Feminino , Testes Genéticos , Humanos , Internet , Nefropatias/genética , Masculino , Pessoa de Meia-Idade , Doenças Raras/genética , Encaminhamento e Consulta/estatística & dados numéricos , Estudos Retrospectivos
6.
Am J Hum Genet ; 98(1): 75-89, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26749309

RESUMO

Congenital hereditary endothelial dystrophy 1 (CHED1) and posterior polymorphous corneal dystrophy 1 (PPCD1) are autosomal-dominant corneal endothelial dystrophies that have been genetically mapped to overlapping loci on the short arm of chromosome 20. We combined genetic and genomic approaches to identify the cause of disease in extensive pedigrees comprising over 100 affected individuals. After exclusion of pathogenic coding, splice-site, and copy-number variations, a parallel approach using targeted and whole-genome sequencing facilitated the identification of pathogenic variants in a conserved region of the OVOL2 proximal promoter sequence in the index families (c.-339_361dup for CHED1 and c.-370T>C for PPCD1). Direct sequencing of the OVOL2 promoter in other unrelated affected individuals identified two additional mutations within the conserved proximal promoter sequence (c.-274T>G and c.-307T>C). OVOL2 encodes ovo-like zinc finger 2, a C2H2 zinc-finger transcription factor that regulates mesenchymal-to-epithelial transition and acts as a direct transcriptional repressor of the established PPCD-associated gene ZEB1. Interestingly, we did not detect OVOL2 expression in the normal corneal endothelium. Our in vitro data demonstrate that all four mutated OVOL2 promoters exhibited more transcriptional activity than the corresponding wild-type promoter, and we postulate that the mutations identified create cryptic cis-acting regulatory sequence binding sites that drive aberrant OVOL2 expression during endothelial cell development. Our data establish CHED1 and PPCD1 as allelic conditions and show that CHED1 represents the extreme of what can be considered a disease spectrum. They also implicate transcriptional dysregulation of OVOL2 as a common cause of dominantly inherited corneal endothelial dystrophies.


Assuntos
Alelos , Distrofias Hereditárias da Córnea/genética , Mutação , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Sequência de Bases , DNA , Feminino , Humanos , Masculino , Linhagem , Homologia de Sequência do Ácido Nucleico
7.
Am J Hum Genet ; 99(1): 174-87, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27392076

RESUMO

Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD.


Assuntos
Anemia/genética , Heterozigoto , Nefropatias/genética , Mutação , Canais de Translocação SEC/genética , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Animais , Biópsia , Criança , Doença Crônica , Progressão da Doença , Retículo Endoplasmático/metabolismo , Exoma/genética , Feminino , Retardo do Crescimento Fetal/genética , Genes Dominantes , Complexo de Golgi/metabolismo , Humanos , Recém-Nascido , Nefropatias/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Neutropenia/genética , Linhagem , Fenótipo , RNA Mensageiro/análise , RNA Mensageiro/genética , Canais de Translocação SEC/química , Síndrome , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética
8.
Clin Nephrol ; 92(6): 302-311, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31587753

RESUMO

AIMS: The reaction to diagnosis and quality of life (QOL) in autosomal dominant tubulointerstitial kidney disease (ADTKD) due to UMOD and MUC mutations from the time of diagnosis until treatment for end-stage kidney disease (ESKD) has not been characterized. It is unclear how asymptomatic patients react to a positive genetic test result. MATERIALS AND METHODS: A cross-sectional survey concerning QOL and genetic testing was delivered to 622 individuals who had undergone genetic testing from families with known ADTKD. RESULTS: 286 of 622 individuals completed the survey, including 61 (21%) genetically unaffected, 36 (12%) with stage 1, 2 chronic kidney disease (CKD), 51 (18%) stage 3, 41 (14%) stage 4 pre-dialysis, 50 (17%) receiving dialysis, and 47 (16%) s/p kidney transplantation. Of 55 respondents who thought they had normal kidney function at the time of testing and were found to have ADTKD, 51 (93%) were happy testing was performed, 3 (5%) neutral, and 1 (2%) neutral/unhappy. 42 of 183 (23%) affected individuals stated that ADTKD "has a substantial effect and I think about it daily," 47 (26%) think about ADTKD weekly, 48 (26%) monthly, and 48 (26%) less than monthly. The mean PROMIS anxiety score was similar between unaffected and affected individuals and the general population. Depression was present in 41% of affected vs. 23% of unaffected individuals (p = 0.01). CONCLUSION: Genetic testing of presymptomatic patients for ADTKD is reasonable when requested. This study provides reassurance regarding the impact on QOL of the increased use of genetic testing to diagnose kidney disease. ADTKD has a significant impact on QOL, with depression, not anxiety, being more prevalent in affected individuals.


Assuntos
Nefropatias/genética , Nefropatias/psicologia , Mucina-1/genética , Mutação , Qualidade de Vida , Uromodulina/genética , Adulto , Idoso , Estudos Transversais , Feminino , Testes Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
9.
J Am Soc Nephrol ; 29(9): 2418-2431, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29967284

RESUMO

BACKGROUND: Autosomal dominant tubulointerstitial kidney disease caused by mucin-1 gene (MUC1) mutations (ADTKD-MUC1) is characterized by progressive kidney failure. Genetic evaluation for ADTKD-MUC1 specifically tests for a cytosine duplication that creates a unique frameshift protein (MUC1fs). Our goal was to develop immunohistochemical methods to detect the MUC1fs created by the cytosine duplication and, possibly, by other similar frameshift mutations and to identify novel MUC1 mutations in individuals with positive immunohistochemical staining for the MUC1fs protein. METHODS: We performed MUC1fs immunostaining on urinary cell smears and various tissues from ADTKD-MUC1-positive and -negative controls as well as in individuals from 37 ADTKD families that were negative for mutations in known ADTKD genes. We used novel analytic methods to identify MUC1 frameshift mutations. RESULTS: After technique refinement, the sensitivity and specificity for MUC1fs immunostaining of urinary cell smears were 94.2% and 88.6%, respectively. Further genetic testing on 17 families with positive MUC1fs immunostaining revealed six families with five novel MUC1 frameshift mutations that all predict production of the identical MUC1fs protein. CONCLUSIONS: We developed a noninvasive immunohistochemical method to detect MUC1fs that, after further validation, may be useful in the future for diagnostic testing. Production of the MUC1fs protein may be central to the pathogenesis of ADTKD-MUC1.


Assuntos
Predisposição Genética para Doença/epidemiologia , Mucina-1/genética , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Biópsia por Agulha , Estudos de Casos e Controles , Feminino , Humanos , Imuno-Histoquímica , Incidência , Masculino , Mutação/genética , Linhagem , Rim Policístico Autossômico Dominante/mortalidade , Prognóstico , Sistema de Registros , Estudos Retrospectivos , Medição de Risco
10.
Hum Mol Genet ; 25(18): 4062-4079, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466185

RESUMO

The Acadian variant of Fanconi Syndrome refers to a specific condition characterized by generalized proximal tubular dysfunction from birth, slowly progressive chronic kidney disease and pulmonary interstitial fibrosis. This condition occurs only in Acadians, a founder population in Nova Scotia, Canada. The genetic and molecular basis of this disease is unknown. We carried out whole exome and genome sequencing and found that nine affected individuals were homozygous for the ultra-rare non-coding variant chr8:96046914 T > C; rs575462405, whereas 13 healthy siblings were either heterozygotes or lacked the mutant allele. This variant is located in intron 2 of NDUFAF6 (NM_152416.3; c.298-768 T > C), 37 base pairs upstream from an alternative splicing variant in NDUFAF6 chr8:96046951 A > G; rs74395342 (c.298-731 A > G). NDUFAF6 encodes NADH:ubiquinone oxidoreductase complex assembly factor 6, also known as C8ORF38. We found that rs575462405-either alone or in combination with rs74395342-affects splicing and synthesis of NDUFAF6 isoforms. Affected kidney and lung showed specific loss of the mitochondria-located NDUFAF6 isoform and ultrastructural characteristics of mitochondrial dysfunction. Accordingly, affected tissues had defects in mitochondrial respiration and complex I biogenesis that were corrected with NDUFAF6 cDNA transfection. Our results demonstrate that the Acadian variant of Fanconi Syndrome results from mitochondrial respiratory chain complex I deficiency. This information may be used in the diagnosis and prevention of this disease in individuals and families of Acadian descent and broadens the spectrum of the clinical presentation of mitochondrial diseases, respiratory chain defects and defects of complex I specifically.


Assuntos
Complexo I de Transporte de Elétrons/genética , Síndrome de Fanconi/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Adulto , Alelos , Canadá , Mapeamento Cromossômico , Exoma/genética , Síndrome de Fanconi/patologia , Feminino , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Mutação
11.
Rheumatology (Oxford) ; 57(7): 1180-1185, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423175

RESUMO

Objectives: Phosphoribosylpyrophosphate synthetase (PRPS1) superactivity is an X-linked disorder characterized by urate overproduction Online Mendelian Inheritance in Man (OMIM) gene reference 300661. This condition is thought to rarely affect women, and when it does, the clinical presentation is mild. We describe a 16-year-old African American female who developed progressive tophi, nephrolithiasis and acute kidney failure due to urate overproduction. Family history included a mother with tophaceous gout who developed end-stage kidney disease due to nephrolithiasis and an affected sister with polyarticular gout. The main aim of this study was to describe the clinical manifestations of PRPS1 superactivity in women. Methods: Whole exome sequencing was performed in affected females and their fathers. Results: Mutational analysis revealed a new c.520 G > A (p.G174R) mutation in the PRPS1 gene. The mutation resulted in decreased PRPS1 inhibition by ADP. Conclusion: Clinical findings in previously reported females with PRPS1 superactivity showed a high clinical penetrance of this disorder with a mean serum urate level of 8.5 (4.1) mg/dl [506 (247) µmol/l] and a high prevalence of gout. These findings indicate that all women in families with PRPS1 superactivity should be genetically screened for a mutation (for clinical management and genetic counselling). In addition, women with tophaceous gout, gout presenting in childhood, or a strong family history of severe gout should be considered for PRPS1 mutational analysis.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Doenças Genéticas Ligadas ao Cromossomo X/genética , Erros Inatos do Metabolismo da Purina-Pirimidina/diagnóstico , Erros Inatos do Metabolismo da Purina-Pirimidina/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Adolescente , Adulto , Artrite Gotosa/etiologia , Artrite Gotosa/genética , Feminino , Humanos , Masculino , Estrutura Molecular , Mutação , Nefrolitíase/etiologia , Nefrolitíase/genética , Linhagem , Erros Inatos do Metabolismo da Purina-Pirimidina/complicações , Ribose-Fosfato Pirofosfoquinase/genética , Sequenciamento Completo do Genoma/métodos
12.
Am J Hum Genet ; 92(5): 792-9, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23602711

RESUMO

The genetic cause of GAPO syndrome, a condition characterized by growth retardation, alopecia, pseudoanodontia, and progressive visual impairment, has not previously been identified. We studied four ethnically unrelated affected individuals and identified homozygous nonsense mutations (c.262C>T [p.Arg88*] and c.505C>T [p.Arg169*]) or splicing mutations (c.1435-12A>G [p.Gly479Phefs*119]) in ANTXR1, which encodes anthrax toxin receptor 1. The nonsense mutations predictably trigger nonsense-mediated mRNA decay, resulting in the loss of ANTXR1. The transcript with the splicing mutation theoretically encodes a truncated ANTXR1 containing a neopeptide composed of 118 unique amino acids in its C terminus. GAPO syndrome's major phenotypic features, which include dental abnormalities and the accumulation of extracellular matrix, recapitulate those found in Antxr1-mutant mice and point toward an underlying defect in extracellular-matrix regulation. Thus, we propose that mutations affecting ANTXR1 function are responsible for this disease's characteristic generalized defect in extracellular-matrix homeostasis.


Assuntos
Alopecia/genética , Anodontia/genética , Cromossomos Humanos Par 2/genética , Matriz Extracelular/genética , Predisposição Genética para Doença/genética , Transtornos do Crescimento/genética , Homeostase/genética , Proteínas de Neoplasias/genética , Atrofias Ópticas Hereditárias/genética , Receptores de Superfície Celular/genética , Alopecia/patologia , Processamento Alternativo/genética , Anodontia/patologia , Sequência de Bases , Códon sem Sentido/genética , Primers do DNA/genética , Matriz Extracelular/metabolismo , Fibroblastos , Imunofluorescência , Frequência do Gene , Transtornos do Crescimento/patologia , Humanos , Masculino , Proteínas dos Microfilamentos , Dados de Sequência Molecular , Atrofias Ópticas Hereditárias/patologia , Linhagem , Sítios de Splice de RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
13.
Am J Hum Genet ; 89(2): 241-52, 2011 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-21820099

RESUMO

Autosomal-dominant adult-onset neuronal ceroid lipofuscinosis (ANCL) is characterized by accumulation of autofluorescent storage material in neural tissues and neurodegeneration and has an age of onset in the third decade of life or later. The genetic and molecular basis of the disease has remained unknown for many years. We carried out linkage mapping, gene-expression analysis, exome sequencing, and candidate-gene sequencing in affected individuals from 20 families and/or individuals with simplex cases; we identified in five individuals one of two disease-causing mutations, c.346_348delCTC and c.344T>G, in DNAJC5 encoding cysteine-string protein alpha (CSPα). These mutations-causing a deletion, p.Leu116del, and an amino acid exchange, p.Leu115Arg, respectively-are located within the cysteine-string domain of the protein and affect both palmitoylation-dependent sorting and the amount of CSPα in neuronal cells. The resulting depletion of functional CSPα might cause in parallel the presynaptic dysfunction and the progressive neurodegeneration observed in affected individuals and lysosomal accumulation of misfolded and proteolysis-resistant proteins in the form of characteristic ceroid deposits in neurons. Our work represents an important step in the genetic dissection of a genetically heterogeneous group of ANCLs. It also confirms a neuroprotective role for CSPα in humans and demonstrates the need for detailed investigation of CSPα in the neuronal ceroid lipofuscinoses and other neurodegenerative diseases presenting with neuronal protein aggregation.


Assuntos
Genes Dominantes/genética , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/epidemiologia , Lipofuscinoses Ceroides Neuronais/genética , Adulto , Idade de Início , Sequência de Bases , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Segregação de Cromossomos/genética , Éxons/genética , Família , Feminino , Dosagem de Genes/genética , Regulação da Expressão Gênica , Ligação Genética , Humanos , Lipoilação , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Masculino , Dados de Sequência Molecular , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Linhagem , Transporte Proteico , Análise de Sequência de DNA
14.
Genes Brain Behav ; 23(1): e12882, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38359179

RESUMO

The genetic correlates of extreme impulsive violence are poorly understood, and there have been few studies that have characterized a large group of affected individuals both clinically and genetically. We performed whole exome sequencing (WES) in 290 males with the life-course-persistent, extremely impulsively violent form of antisocial personality disorder (APD) and analyzed the spectrum of rare protein-truncating variants (rPTVs). Comparisons were made with 314 male controls and publicly available genotype data. Functional annotation tools were used for biological interpretation. Participants were significantly more likely to harbor rPTVs in genes that are intolerant to loss-of-function variants (odds ratio [OR] 2.06; p < 0.001), specifically expressed in brain (OR 2.80; p = 0.036) and enriched for those involved in neurotransmitter transport and synaptic processes. In 60 individuals (20%), we identified rPTVs that we classified as clinically relevant based on their clinical associations, biological function and gene expression patterns. Of these, 37 individuals harbored rPTVs in 23 genes that are associated with a monogenic neurological disorder, and 23 individuals harbored rPTVs in 20 genes reportedly intolerant to loss-of-function variants. The analysis presents evidence in support of a model where presence of either one or several private, functionally relevant mutations contribute significantly to individual risk of life-course-persistent APD and reveals multiple individuals who could be affected by clinically unrecognized neuropsychiatric Mendelian disease. Thus, Mendelian diseases and increased rPTV burden may represent important factors for the development of extremely impulsive violent life-course-persistent forms of APD irrespective of their clinical presentation.


Assuntos
Agressão , Transtorno da Personalidade Antissocial , Humanos , Masculino , Transtorno da Personalidade Antissocial/genética , Encéfalo , Violência/psicologia , Genótipo
15.
Sci Rep ; 13(1): 6156, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37061534

RESUMO

The inability to predict the evolution of the COVID-19 epidemic hampered abilities to respond to the crisis effectively. The cycle threshold (Ct) from the standard SARS-CoV-2 quantitative reverse transcription-PCR (RT-qPCR) clinical assay is inversely proportional to the amount of SARS-CoV-2 RNA in the sample. We were interested to see if population Ct values could predict future increases in COVID-19 cases as well as subgroups that would be more likely to be affected. This information would have been extremely helpful early in the COVID-19 epidemic. We therefore conducted a retrospective analysis of demographic data and Ct values from 2,076,887 nasopharyngeal swab RT-qPCR tests that were performed at a single diagnostic laboratory in the Czech Republic from April 2020 to April 2022 and from 221,671 tests that were performed as a part of a mandatory school surveillance testing program from March 2021 to March 2022. We found that Ct values could be helpful predictive tools in the real-time management of viral epidemics. First, early measurement of Ct values would have indicated the low viral load in children, equivalent viral load in males and females, and higher viral load in older individuals. Second, rising or falling median Ct values and differences in Ct distribution indicated changes in the transmission in the population. Third, monitoring Ct values and positivity rates would have provided early evidence as to whether prevention measures are effective. Health system authorities should thus consider collecting weekly median Ct values of positively tested samples from major diagnostic laboratories for regional epidemic surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Masculino , Criança , Feminino , Humanos , Idoso , SARS-CoV-2/genética , COVID-19/epidemiologia , COVID-19/diagnóstico , RNA Viral/genética , RNA Viral/análise , República Tcheca/epidemiologia , Estudos Retrospectivos , Carga Viral
16.
Biochim Biophys Acta ; 1807(1): 144-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937241

RESUMO

TMEM70 protein represents a novel ancillary factor of mammalian ATP synthase. We have investigated import and processing of this factor in human cells using GFP- and FLAG-tagged forms of TMEM70 and specific antibodies. TMEM70 is synthesized as a 29kDa precursor protein that is processed to a 21kDa mature form. Immunocytochemical detection of TMEM70 showed mitochondrial colocalization with MitoTracker Red and ATP synthase. Western blot of subcellular fractions revealed the highest signal of TMEM70 in isolated mitochondria and mitochondrial location was confirmed by mass spectrometry analysis. Based on analysis of submitochondrial fractions, TMEM70 appears to be located in the inner mitochondrial membrane, in accordance with predicated transmembrane regions in the central part of the TMEM70 sequence. Two-dimensional electrophoretic analysis did not show direct interaction of TMEM70 with assembled ATP synthase but indicated the presence of dimeric form of TMEM70. No TMEM70 protein could be found in cells and isolated mitochondria from patients with ATP synthase deficiency due to TMEM70 c.317-2A>G mutation thus confirming that TMEM70 biosynthesis is prevented in these patients.


Assuntos
Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Sequência de Aminoácidos , Animais , Western Blotting , Bovinos , Linhagem Celular , Clonagem Molecular , DNA Complementar/genética , Escherichia coli/enzimologia , Fibroblastos/enzimologia , Humanos , Rim/enzimologia , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/deficiência , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Partículas Submitocôndricas/enzimologia
17.
Nat Commun ; 12(1): 1135, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602924

RESUMO

While >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Mitocôndrias/genética , Mutação/genética , Doenças do Sistema Nervoso/genética , Transcrição Gênica , Adolescente , Adulto , Criança , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/química , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Masculino , Doenças do Sistema Nervoso/patologia , Fosforilação Oxidativa , Linhagem , Domínios Proteicos , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Adulto Jovem
18.
Mol Genet Genomic Med ; 8(7): e1238, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32337852

RESUMO

BACKGROUND: Spinal muscular atrophy (SMA) is an inherited neuromuscular disease affecting 1 in 8,000 newborns. The majority of patients carry bi-allelic variants in the survival of motor neuron 1 gene (SMN1). SMN1 is located in a duplicated region on chromosome 5q13 that contains Alu elements and is predisposed to genomic rearrangements. Due to the genomic complexity of the SMN region and genetic heterogeneity, approximately 50% of SMA patients remain without genetic diagnosis that is a prerequisite for genetic treatments. In this work we describe the diagnostic odyssey of one SMA patient in whom routine diagnostics identified only a maternal heterozygous SMN1Δ(7-8) deletion. METHODS: We characterized SMN transcripts, assessed SMN protein content in peripheral blood mononuclear cells (PBMC), estimated SMN genes dosage, and mapped genomic rearrangement in the SMN region. RESULTS: We identified an Alu-mediated deletion encompassing exons 2a-5 of SMN1 on the paternal allele and a complete deletion of SMN1 on the maternal allele as the cause of SMA in this patient. CONCLUSION: Alu-mediated rearrangements in SMN1 can escape routine diagnostic testing. Parallel analysis of SMN gene dosage, SMN transcripts, and total SMN protein levels in PBMC can identify genomic rearrangements and should be considered in genetically undefined SMA cases.


Assuntos
Deleção de Genes , Testes Genéticos/métodos , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Elementos Alu , Western Blotting/métodos , Pré-Escolar , Feminino , Humanos , Leucócitos Mononucleares/metabolismo , Atrofia Muscular Espinal/diagnóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA/métodos , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
19.
Eur J Hum Genet ; 28(6): 783-789, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31919451

RESUMO

Adult-onset neuronal ceroid lipofuscinoses (ANCL, Kufs disease) are rare hereditary neuropsychiatric disorders characterized by intralysosomal accumulation of ceroid in tissues. The ceroid accumulation primarily affects the brain, leading to neuronal loss and progressive neurodegeneration. Although several causative genes have been identified (DNAJC5, CLN6, CTSF, GRN, CLN1, CLN5, ATP13A2), the genetic underpinnings of ANCL in some families remain unknown. Here we report one family with autosomal dominant (AD) Kufs disease caused by a 30 bp in-frame duplication in DNAJC5, encoding the cysteine-string protein alpha (CSPα). This variant leads to a duplication of the central core motif of the cysteine-string domain of CSPα and affects palmitoylation-dependent CSPα sorting in cultured neuronal cells similarly to two previously described CSPα variants, p.(Leu115Arg) and p.(Leu116del). Interestingly, the duplication was not detected initially by standard Sanger sequencing due to a preferential PCR amplification of the shorter wild-type allele and allelic dropout of the mutated DNAJC5 allele. It was also missed by subsequent whole-exome sequencing (WES). Its identification was facilitated by reanalysis of original WES data and modification of the PCR and Sanger sequencing protocols. Independently occurring variants in the genomic sequence of DNAJC5 encoding the cysteine-string domain of CSPα suggest that this region may be more prone to DNA replication errors and that insertions or duplications within this domain should be considered in unsolved ANCL cases.


Assuntos
Duplicação Gênica , Proteínas de Choque Térmico HSP40/genética , Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/genética , Adulto , Animais , Linhagem Celular , Reações Falso-Negativas , Feminino , Testes Genéticos/normas , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Pessoa de Meia-Idade , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Sequenciamento Completo do Genoma/normas
20.
Genes Brain Behav ; 18(6): e12536, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30411505

RESUMO

The genetic correlates of extreme impulsive violence are poorly understood, and there have been no studies that have systematically characterized a large group of affected individuals both clinically and genetically. We performed a genome-wide rare copy number variant (CNV) analysis in 281 males from four Czech prisons who met strict clinical criteria for extreme impulsive violence. Inclusion criteria included age ≥ 18 years, an ICD-10 diagnosis of Dissocial Personality Disorder, and the absence of an organic brain disorder. Participants underwent a structured psychiatric assessment to diagnose extreme impulsive violence and then provided a blood sample for genetic analysis. DNA was genotyped and CNVs were identified using Illumina HumanOmni2.5 single-nucleotide polymorphism array platform. Comparing with 10851 external population controls, we identified 828 rare CNVs (frequency ≤ 0.1% among control samples) in 264 participants. The CNVs impacted 754 genes, with 124 genes impacted more than once (2-25 times). Many of these genes are associated with autosomal dominant or X-linked disorders affecting adult behavior, cognition, learning, intelligence, specifically expressed in the brain and relevant to synapses, neurodevelopment, neurodegeneration, obesity and neuropsychiatric phenotypes. Specifically, we identified 31 CNVs of clinical relevance in 31 individuals, 59 likely clinically relevant CNVs in 49 individuals, and 17 recurrent CNVs in 65 individuals. Thus, 123 of 281 (44%) individuals had one to several rare CNVs that were indirectly or directly relevant to impulsive violence. Extreme impulsive violence is genetically heterogeneous and genomic analysis is likely required to identify, further research and specifically treat the causes in affected individuals.


Assuntos
Transtorno da Personalidade Antissocial/genética , Variações do Número de Cópias de DNA , Comportamento Impulsivo , Violência , Adolescente , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa