Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Thorax ; 72(2): 137-147, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27852956

RESUMO

We have recently shown that non-viral gene therapy can stabilise the decline of lung function in patients with cystic fibrosis (CF). However, the effect was modest, and more potent gene transfer agents are still required. Fuson protein (F)/Hemagglutinin/Neuraminidase protein (HN)-pseudotyped lentiviral vectors are more efficient for lung gene transfer than non-viral vectors in preclinical models. In preparation for a first-in-man CF trial using the lentiviral vector, we have undertaken key translational preclinical studies. Regulatory-compliant vectors carrying a range of promoter/enhancer elements were assessed in mice and human air-liquid interface (ALI) cultures to select the lead candidate; cystic fibrosis transmembrane conductance receptor (CFTR) expression and function were assessed in CF models using this lead candidate vector. Toxicity was assessed and 'benchmarked' against the leading non-viral formulation recently used in a Phase IIb clinical trial. Integration site profiles were mapped and transduction efficiency determined to inform clinical trial dose-ranging. The impact of pre-existing and acquired immunity against the vector and vector stability in several clinically relevant delivery devices was assessed. A hybrid promoter hybrid cytosine guanine dinucleotide (CpG)- free CMV enhancer/elongation factor 1 alpha promoter (hCEF) consisting of the elongation factor 1α promoter and the cytomegalovirus enhancer was most efficacious in both murine lungs and human ALI cultures (both at least 2-log orders above background). The efficacy (at least 14% of airway cells transduced), toxicity and integration site profile supports further progression towards clinical trial and pre-existing and acquired immune responses do not interfere with vector efficacy. The lead rSIV.F/HN candidate expresses functional CFTR and the vector retains 90-100% transduction efficiency in clinically relevant delivery devices. The data support the progression of the F/HN-pseudotyped lentiviral vector into a first-in-man CF trial in 2017.


Assuntos
Fibrose Cística/genética , Fibrose Cística/terapia , Terapia Genética/métodos , Lentivirus/genética , Animais , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Camundongos , Fator 1 de Elongação de Peptídeos , Regiões Promotoras Genéticas
2.
Nature ; 478(7369): 391-4, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21993621

RESUMO

Human induced pluripotent stem cells (iPSCs) represent a unique opportunity for regenerative medicine because they offer the prospect of generating unlimited quantities of cells for autologous transplantation, with potential application in treatments for a broad range of disorders. However, the use of human iPSCs in the context of genetically inherited human disease will require the correction of disease-causing mutations in a manner that is fully compatible with clinical applications. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome. Therefore, the development of new approaches to edit the mammalian genome is a prerequisite to delivering the clinical promise of human iPSCs. Here we show that a combination of zinc finger nucleases (ZFNs) and piggyBac technology in human iPSCs can achieve biallelic correction of a point mutation (Glu342Lys) in the α(1)-antitrypsin (A1AT, also known as SERPINA1) gene that is responsible for α(1)-antitrypsin deficiency. Genetic correction of human iPSCs restored the structure and function of A1AT in subsequently derived liver cells in vitro and in vivo. This approach is significantly more efficient than any other gene-targeting technology that is currently available and crucially prevents contamination of the host genome with residual non-human sequences. Our results provide the first proof of principle, to our knowledge, for the potential of combining human iPSCs with genetic correction to generate clinically relevant cells for autologous cell-based therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Reparo Gênico Alvo-Dirigido , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Animais , Linhagem Celular , Elementos de DNA Transponíveis/genética , Hepatócitos/metabolismo , Hepatócitos/transplante , Humanos , Fígado/citologia , Camundongos , Albumina Sérica/genética , Albumina Sérica/metabolismo , Albumina Sérica Humana , Fatores de Tempo , alfa 1-Antitripsina/metabolismo
3.
Stem Cells ; 33(6): 2077-84, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25694335

RESUMO

Trisomy 21 (T21), Down Syndrome (DS) is the most common genetic cause of dementia and intellectual disability. Modeling DS is beginning to yield pharmaceutical therapeutic interventions for amelioration of intellectual disability, which are currently being tested in clinical trials. DS is also a unique genetic system for investigation of pathological and protective mechanisms for accelerated ageing, neurodegeneration, dementia, cancer, and other important common diseases. New drugs could be identified and disease mechanisms better understood by establishment of well-controlled cell model systems. We have developed a first nonintegration-reprogrammed isogenic human induced pluripotent stem cell (iPSC) model of DS by reprogramming the skin fibroblasts from an adult individual with constitutional mosaicism for DS and separately cloning multiple isogenic T21 and euploid (D21) iPSC lines. Our model shows a very low number of reprogramming rearrangements as assessed by a high-resolution whole genome CGH-array hybridization, and it reproduces several cellular pathologies seen in primary human DS cells, as assessed by automated high-content microscopic analysis. Early differentiation shows an imbalance of the lineage-specific stem/progenitor cell compartments: T21 causes slower proliferation of neural and faster expansion of hematopoietic lineage. T21 iPSC-derived neurons show increased production of amyloid peptide-containing material, a decrease in mitochondrial membrane potential, and an increased number and abnormal appearance of mitochondria. Finally, T21-derived neurons show significantly higher number of DNA double-strand breaks than isogenic D21 controls. Our fully isogenic system therefore opens possibilities for modeling mechanisms of developmental, accelerated ageing, and neurodegenerative pathologies caused by T21.


Assuntos
Envelhecimento/fisiologia , Diferenciação Celular/fisiologia , Síndrome de Down/genética , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Animais , Células Cultivadas , Fibroblastos/citologia , Humanos , Mitocôndrias/genética
4.
Mol Ther ; 21(3): 707-14, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23319060

RESUMO

We here report the results of a Phase I/IIa open-label four dose-escalation clinical study assessing the safety, tolerability, and possible therapeutic efficacy of a single intramuscular administration of DVC1-0101, a new gene transfer vector based on a nontransmissible recombinant Sendai virus (rSeV) expressing the human fibroblast growth factor-2 (FGF-2) gene (rSeV/dF-hFGF2), in patients with peripheral arterial disease (PAD). Gene transfer was done in 12 limbs of 12 patients with rest pain, and three of them had ischemic ulcer(s). No cardiovascular or other serious adverse events (SAEs) caused by gene transfer were detected in the patients over a 6-month follow-up. No infectious viral particles, as assessed by hemagglutination activity, were detected in any patient during the study. No representative elevation of proinflammatory cytokines or plasma FGF-2 was seen. Significant and continuous improvements in Rutherford category, absolute claudication distance (ACD), and rest pain were observed (P < 0.05 to 0.01). To the best of our knowledge, this is the first clinical trial of the use of a gene transfer vector based on rSeV. The single intramuscular administration of DVC1-0101 to PAD patients was safe and well tolerated, and resulted in significant improvements of limb function. Larger pivotal studies are warranted as a next step.


Assuntos
Fator 2 de Crescimento de Fibroblastos/genética , Terapia Genética/métodos , Doença Arterial Periférica/terapia , Idoso , Idoso de 80 Anos ou mais , Citocinas/metabolismo , Feminino , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/genética , Vírus Sendai/genética , Resultado do Tratamento
5.
Proc Natl Acad Sci U S A ; 108(34): 14234-9, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21821793

RESUMO

After the first report of induced pluripotent stem cells (iPSCs), considerable efforts have been made to develop more efficient methods for generating iPSCs without foreign gene insertions. Here we show that Sendai virus vector, an RNA virus vector that carries no risk of integrating into the host genome, is a practical solution for the efficient generation of safer iPSCs. We improved the Sendai virus vectors by introducing temperature-sensitive mutations so that the vectors could be easily removed at nonpermissive temperatures. Using these vectors enabled the efficient production of viral/factor-free iPSCs from both human fibroblasts and CD34(+) cord blood cells. Temperature-shift treatment was more effective in eliminating remaining viral vector-related genes. The resulting iPSCs expressed human embryonic stem cell markers and exhibited pluripotency. We suggest that generation of transgene-free iPSCs from cord blood cells should be an important step in providing allogeneic iPSC-derived therapy in the future.


Assuntos
Vetores Genéticos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Vírus Sendai/genética , Temperatura , Transgenes/genética , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Epigênese Genética , Sangue Fetal/citologia , Fibroblastos/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos
6.
J Virol ; 86(2): 738-45, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22072784

RESUMO

Cytotoxic T lymphocyte (CTL) responses play a central role in viral suppression in human immunodeficiency virus (HIV) infections. Prophylactic vaccination resulting in effective CTL responses after viral exposure would contribute to HIV control. It is important to know how CTL memory induction by vaccination affects postexposure CTL responses. We previously showed vaccine-based control of a simian immunodeficiency virus (SIV) challenge in a group of Burmese rhesus macaques sharing a major histocompatibility complex class I haplotype. Gag(206-216) and Gag(241-249) epitope-specific CTL responses were responsible for this control. In the present study, we show the impact of individual epitope-specific CTL induction by prophylactic vaccination on postexposure CTL responses. In the acute phase after SIV challenge, dominant Gag(206-216)-specific CTL responses with delayed, naive-derived Gag(241-249)-specific CTL induction were observed in Gag(206-216) epitope-vaccinated animals with prophylactic induction of single Gag(206-216) epitope-specific CTL memory, and vice versa in Gag(241-249) epitope-vaccinated animals with single Gag(241-249) epitope-specific CTL induction. Animals with Gag(206-216)-specific CTL induction by vaccination selected for a Gag(206-216)-specific CTL escape mutation by week 5 and showed significantly less decline of plasma viral loads from week 3 to week 5 than in Gag(241-249) epitope-vaccinated animals without escape mutations. Our results present evidence indicating significant influence of prophylactic vaccination on postexposure CTL immunodominance and cooperation of vaccine antigen-specific and non-vaccine antigen-specific CTL responses, which affects virus control. These findings provide great insights into antigen design for CTL-inducing AIDS vaccines.


Assuntos
Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T Citotóxicos/imunologia , Replicação Viral , Animais , Modelos Animais de Doenças , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/imunologia , HIV/genética , HIV/imunologia , HIV/fisiologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vacinas contra a SAIDS/genética , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Citotóxicos/virologia , Vacinação , Carga Viral
7.
J Immunol ; 186(3): 1828-39, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21187441

RESUMO

Dendritic cell (DC)-based immunotherapy has potential for treating infections and malignant tumors, but the functional capacity of DC must be assessed in detail, especially maturation and Ag-specific CTL priming. Recent reports suggest that DC that are provided with continuous maturation signals in vivo after transfer into patients are required to elicit the full DC functions. We demonstrate in this study that the rSendai virus vector (SeV) is a novel and ideal stimulant, providing DC with a continuous maturation signal via viral RNA synthesis in the cytosol, resulting in full maturation of monocyte-derived DC(s). Both RIG-I-dependent cytokine production and CD4 T cell responses to SeV-derived helper Ags are indispensable for overcoming regulatory T cell suppression to prime melanoma Ag recognized by T cell-1-specific CTL in the regulatory T cell abundant setting. DC stimulated via cytokine receptors, or TLRs, do not show these functional features. Therefore, SeV-infected DC have the potential for DC-directed immunotherapy.


Assuntos
Diferenciação Celular/imunologia , Citosol/imunologia , RNA Helicases DEAD-box/fisiologia , Células Dendríticas/imunologia , RNA Viral/biossíntese , Vírus Sendai/imunologia , Transdução de Sinais/imunologia , Replicação Viral/imunologia , Antígenos de Neoplasias/imunologia , Antígenos Virais/fisiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Diferenciação Celular/genética , Linhagem Celular Transformada , Técnicas de Cocultura , Citosol/metabolismo , Citosol/virologia , Testes Imunológicos de Citotoxicidade , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Células Dendríticas/patologia , Células Dendríticas/virologia , Epitopos de Linfócito T/imunologia , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Humanos , Monócitos/imunologia , Monócitos/metabolismo , Monócitos/virologia , RNA Viral/genética , Receptores Imunológicos , Vírus Sendai/genética , Transdução de Sinais/genética , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/virologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/virologia , Replicação Viral/genética
8.
Mol Ther ; 20(4): 769-77, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22314292

RESUMO

Malignant pleural mesothelioma (MPM) is highly intractable and readily spreads throughout the surface of the pleural cavity, and these cells have been shown to express urokinase-type plasminogen activator receptor (uPAR). We here examined the potential of our new and powerful recombinant Sendai virus (rSeV), which shows uPAR-specific cell-to-cell fusion activity (rSeV/dMFct14 (uPA2), named "BioKnife"), for tumor cell killing in two independent orthotopic xenograft models of human. Multicycle treatment using BioKnife resulted in the efficient rescue of these models, in association with tumor-specific fusion and apoptosis. Such an effect was also seen on both MSTO-211H and H226 cells in vitro; however, we confirmed that the latter expressed uPAR but not uPA. Of interest, infection with BioKnife strongly facilitated the uPA release from H226 cells, and this effect was completely abolished by use of either pyrrolidine dithiocarbamate (PDTC) or BioKnife expressing the C-terminus-deleted dominant negative inhibitor for retinoic acid-inducible gene-I (RIG-IC), indicating that BioKnife-dependent expression of uPA was mediated by the RIG-I/nuclear factor-κB (NF-κB) axis, detecting RNA viral genome replication. Therefore, these results suggest a proof of concept that the tumor cell-killing mechanism via BioKnife may have significant potential to treat patients with MPM that is characterized by frequent uPAR expression in a clinical setting.


Assuntos
Mesotelioma/metabolismo , Mesotelioma/terapia , Vírus Oncolíticos/fisiologia , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/terapia , Vírus Sendai/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Imuno-Histoquímica , Mesotelioma/genética , Camundongos , Vírus Oncolíticos/genética , Neoplasias Pleurais/genética , RNA Interferente Pequeno , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sendai/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Am J Respir Crit Care Med ; 186(9): 846-56, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22955314

RESUMO

RATIONALE: Ongoing efforts to improve pulmonary gene transfer thereby enabling gene therapy for the treatment of lung diseases, such as cystic fibrosis (CF), has led to the assessment of a lentiviral vector (simian immunodeficiency virus [SIV]) pseudotyped with the Sendai virus envelope proteins F and HN. OBJECTIVES: To place this vector onto a translational pathway to the clinic by addressing some key milestones that have to be achieved. METHODS: F/HN-SIV transduction efficiency, duration of expression, and toxicity were assessed in mice. In addition, F/HN-SIV was assessed in differentiated human air-liquid interface cultures, primary human nasal epithelial cells, and human and sheep lung slices. MEASUREMENTS AND MAIN RESULTS: A single dose produces lung expression for the lifetime of the mouse (~2 yr). Only brief contact time is needed to achieve transduction. Repeated daily administration leads to a dose-related increase in gene expression. Repeated monthly administration to mouse lower airways is feasible without loss of gene expression. There is no evidence of chronic toxicity during a 2-year study period. F/HN-SIV leads to persistent gene expression in human differentiated airway cultures and human lung slices and transduces freshly obtained primary human airway epithelial cells. CONCLUSIONS: The data support F/HN-pseudotyped SIV as a promising vector for pulmonary gene therapy for several diseases including CF. We are now undertaking the necessary refinements to progress this vector into clinical trials.


Assuntos
Fibrose Cística/genética , Terapia Genética/métodos , Vetores Genéticos , Lentivirus/genética , Análise de Variância , Animais , Fibrose Cística/terapia , Modelos Animais de Doenças , Feminino , Técnicas de Transferência de Genes , Humanos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Pulmão/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Vírus da Imunodeficiência Símia
10.
Cancer Sci ; 102(7): 1366-73, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21435101

RESUMO

Human malignant pleural mesothelioma (HMPM) is highly resistant to conventional therapy, and therefore novel therapies are required. We previously reported that overexpression of the FUSE-binding protein-interacting repressor (FIR), a c-myc transcriptional repressor, induces apoptosis via c-Myc suppression, and is thus a suitable cancer therapy. In the current preclinical trial, a fusion gene deleted non-transmissible Sendai virus vector encoding FIR (SeV/ΔF/FIR) was prepared and its cytotoxic activity against an orthotopic xenograft model of HMPM, in combination with cisplatin, was assessed. SeV/ΔF/FIR and a fusion gene deleted non-transmissible Sendai virus vector encoding green fluorescent protein (SeV/ΔF/GFP) were prepared. The transduction efficiency of these agents in terms of dose-dependent cytotoxicity and/or apoptosis induction was then assessed in a few HMPM cells. Combination therapy with SeV/ΔF/FIR plus cisplatin was evaluated in vitro and in a mouse model. SeV/ΔF/FIR significantly reduced cell viability in three HMPM cell lines but was less effective in non-tumor immortalized mesothelial cells. SeV/ΔF/FIR cytotoxicity was partly due to apoptosis induction via c-Myc suppression. In addition, SeV/ΔF/FIR showed synergistic antitumor effects in combination with cisplatin, as was revealed by isobologram analysis in MSTO-211H. Moreover, combination therapy with SeV/ΔF/FIR plus cisplatin demonstrated significant tumor reduction and improvement in survival rate in an animal model. Combination therapy with SeV/ΔF/FIR plus cisplatin has therapeutic potential against HMPM. SeV/ΔF/FIR plus cisplatin will be an attractive modality against HMPM in the future.


Assuntos
Proteínas de Transporte/genética , Cisplatino/uso terapêutico , Terapia Genética , Mesotelioma/terapia , Neoplasias Pleurais/terapia , Vírus Sendai/genética , Animais , Apoptose , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Terapia Genética/efeitos adversos , Vetores Genéticos , Humanos , Masculino , Mesotelioma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Pleurais/patologia , Fatores de Processamento de RNA , Proteínas de Ligação a RNA , Proteínas Repressoras , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Biochem Biophys Res Commun ; 408(4): 615-9, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21531211

RESUMO

Cytotoxic T lymphocyte (CTL) responses are crucial for the control of human and simian immunodeficiency virus (HIV and SIV) replication. A promising AIDS vaccine strategy is to induce CTL memory resulting in more effective CTL responses post-viral exposure compared to those in natural HIV infections. We previously developed a CTL-inducing vaccine and showed SIV control in some vaccinated rhesus macaques. These vaccine-based SIV controllers elicited vaccine antigen-specific CTL responses dominantly in the acute phase post-challenge. Here, we examined CTL responses post-challenge in those vaccinated animals that failed to control SIV replication. Unvaccinated rhesus macaques possessing the major histocompatibility complex class I haplotype 90-088-Ij dominantly elicited SIV non-Gag antigen-specific CTL responses after SIV challenge, while those induced with Gag-specific CTL memory by prophylactic vaccination failed to control SIV replication with dominant Gag-specific CTL responses in the acute phase, indicating dominant induction of vaccine antigen-specific CTL responses post-challenge even in non-controllers. Further analysis suggested that prophylactic vaccination results in dominant induction of vaccine antigen-specific CTL responses post-viral exposure but delays SIV non-vaccine antigen-specific CTL responses. These results imply a significant influence of prophylactic vaccination on CTL immunodominance post-viral exposure, providing insights into antigen design in development of a CTL-inducing AIDS vaccine.


Assuntos
Vacinas contra a AIDS/imunologia , Antígenos Virais/imunologia , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Linfócitos T Citotóxicos/imunologia , Vacinas contra a AIDS/uso terapêutico , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Animais , Humanos , Macaca mulatta , Vacinas contra a SAIDS/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia
12.
J Immunol ; 183(7): 4211-9, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19734206

RESUMO

We recently demonstrated efficient antitumor immunity against murine tumors using dendritic cells (DCs) activated by recombinant Sendai viruses (rSeVs), and proposed a new concept, "immunostimulatory virotherapy," for cancer immunotherapy. However, there has been little information on the efficacy of this method in preventing metastatic diseases. In this study, we investigated the efficacy of vaccinating DCs activated by fusion gene-deleted nontransmissible rSeV (rSeV/dF) using a murine model of lung metastasis. Bolus and i.v. administration of DCs harboring rSeV/dF-expressing GFP without pulsation of tumor Ag (DC-rSeV/dF-GFP) 2 days before tumor inoculation showed efficient prevention against lung metastasis of c1300 neuroblastoma, but not of RM-9 prostatic cancer. We found that the timing of DC therapy was critical for the inhibition of pulmonary metastasis of RM-9, and that the optimal effect of DCs was seen 28 days before tumor inoculation. Interestingly, the antimetastatic effect was sustained for over 3 mo, even when administered DCs were already cleared from the lung and organs related to the immune system. Although NK cell activity had already declined to baseline at the time of tumor inoculation, Ab-mediated depletion studies revealed that CD4+ cells as well as the presence of, but not the activation of, NK cells were crucial to the prevention of lung metastasis. These results are the first demonstration of efficient inhibition of lung metastasis via bolus administration of virally activated DCs that was sustained and NK/CD4+ cell-dependent, and may suggest a potentially new mechanism of DC-based immunotherapy for advanced malignancies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Células Dendríticas/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Vírus Sendai/imunologia , Animais , Proliferação de Células , Citotoxicidade Imunológica/genética , Células Dendríticas/virologia , Neoplasias Pulmonares/patologia , Linfonodos/imunologia , Linfonodos/patologia , Masculino , Camundongos , Camundongos Endogâmicos A , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Neuroblastoma/imunologia , Terapia Viral Oncolítica , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/virologia , Vírus Sendai/genética , Fatores de Tempo , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
13.
Mol Ther ; 18(10): 1778-86, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20606645

RESUMO

Glioblastoma multiforme (GM), the most frequent primary malignant brain tumor, is highly invasive due to the expression of proteases, including urokinase-type plasminogen activator (uPA). Here, we show the potential of our new and powerful recombinant Sendai virus (rSeV) showing uPA-specific cell-to-cell fusion activity [rSeV/dMFct14 (uPA2), named "BioKnife"] for GM treatment, an effect that was synergistically enhanced by arming BioKnife with the interferon-ß (IFN-ß) gene. BioKnife killed human GM cell lines efficiently in a uPA-dependent fashion, and this killing was prevented by PA inhibitor-1. Rat gliosarcoma 9L cells expressing both uPA and its functional receptor uPAR (9L-L/R) exhibited high uPA activity on the cellular surface and were highly susceptible to BioKnife. Although parent 9L cells (9L-P) were resistant to BioKnife and to BioKnife expressing IFN-ß (BioKnife-IFNß), cell-cell fusion of 9L-L/R strongly facilitated the expression of IFN-ß, and in turn, IFN-ß significantly accelerated the fusion activity of BioKnife. A similar synergy was seen in a rat orthotopic brain GM model with 9L-L/R in vivo; therefore, these results suggest that BioKnife-IFNß may have significant potential to improve the survival of GM patients in a clinical setting.


Assuntos
Glioblastoma/terapia , Interferon beta/metabolismo , Vírus Oncolíticos/fisiologia , Vírus Sendai/fisiologia , Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Animais , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Interferon beta/genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Vírus Oncolíticos/genética , Inibidor 1 de Ativador de Plasminogênio/farmacologia , Ratos , Ratos Endogâmicos F344 , Receptores de Ativador de Plasminogênio Tipo Uroquinase/genética , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus Sendai/genética , Ativador de Plasminogênio Tipo Uroquinase/genética
14.
Mol Ther ; 18(6): 1173-82, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20332767

RESUMO

Gene therapy for cystic fibrosis (CF) is making encouraging progress into clinical trials. However, further improvements in transduction efficiency are desired. To develop a novel gene transfer vector that is improved and truly effective for CF gene therapy, a simian immunodeficiency virus (SIV) was pseudotyped with envelope proteins from Sendai virus (SeV), which is known to efficiently transduce unconditioned airway epithelial cells from the apical side. This novel vector was evaluated in mice in vivo and in vitro directed toward CF gene therapy. Here, we show that (i) we can produce relevant titers of an SIV vector pseudotyped with SeV envelope proteins for in vivo use, (ii) this vector can transduce the respiratory epithelium of the murine nose in vivo at levels that may be relevant for clinical benefit in CF, (iii) this can be achieved in a single formulation, and without the need for preconditioning, (iv) expression can last for 15 months, (v) readministration is feasible, (vi) the vector can transduce human air-liquid interface (ALI) cultures, and (vii) functional CF transmembrane conductance regulator (CFTR) chloride channels can be generated in vitro. Our data suggest that this lentiviral vector may provide a step change in airway transduction efficiency relevant to a clinical programme of gene therapy for CF.


Assuntos
Fibrose Cística/terapia , Terapia Genética , Vetores Genéticos , Lentivirus/genética , Vírus Sendai/genética , Proteínas do Envelope Viral/genética , Animais , Diferenciação Celular , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução Genética
15.
Hum Vaccin ; 7(6): 639-45, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21508675

RESUMO

A Sendai virus (SeV) vector is being developed for delivery of an HIV immunogen. SeV is not known to cause disease in humans. Because it is genetically and antigenically related to human parainfluenza virus type 1 (hPIV-1), it is important to determine whether pre-existing hPIV-1 antibodies will affect immune responses elicited by a SeV vector-based vaccine. To quantify SeV neutralizing antibodies (NAb) in human serum, a sensitive virus neutralization assay was developed using a SeV vector encoding green fluorescent protein. Samples from 255 HIV-uninfected subjects from Africa, Europe, United States, and Japan, as well as from 12 confirmed hPIV-1-infected patients, were analyzed. SeV NAb titers did not vary significantly after serum was treated with receptor-destroying enzyme, indicating that non-specific hemagglutination inhibitors did not affect the assay sensitivity. A significant correlation was observed between hPIV-1 ELISA and SeV NAb titers. SeV NAb were detected in 92.5% subjects with a median titer of 60.6 and values ranging from 5.9- 11,324. The majority had titers < 1000 with 71.7% < 100 (< 5 considered negative). There was no significant difference in titer or prevalence by gender, age range or geographic origin. However, African males had a lower titer than non-Africans of either gender (p=0.007). Overall, the prevalence of SeV NAb is high and likely due to neutralization by cross-reactive hPIV-1 antibodies. Clinical trials will be needed to assess the influence of pre-existing SeV NAb on HIV-specific immune responses elicited by a SeV vaccine vector expressing HIV.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus Sendai/imunologia , Adolescente , Adulto , África , Reações Cruzadas , Europa (Continente) , Feminino , Vetores Genéticos , Humanos , Japão , Masculino , Pessoa de Meia-Idade , Vírus da Parainfluenza 1 Humana/imunologia , Vírus Sendai/genética , Estados Unidos
16.
J Exp Med ; 199(12): 1709-18, 2004 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-15210746

RESUMO

Recently, encouraging AIDS vaccine trials in macaques have implicated cytotoxic T lymphocytes (CTLs) in the control of the simian human immunodeficiency virus SHIV89.6P that induces acute CD4(+) T cell depletion. However, none of these vaccine regimens have been successful in the containment of replication of the pathogenic simian immunodeficiency viruses (SIVs) that induce chronic disease progression. Indeed, it has remained unclear if vaccine-induced CTL can control SIV replication. Here, we show evidence suggesting that vaccine-induced CTLs control SIVmac239 replication in rhesus macaques. Eight macaques vaccinated with DNA-prime/Gag-expressing Sendai virus vector boost were challenged intravenously with SIVmac239. Five of the vaccinees controlled viral replication and had undetectable plasma viremia after 5 wk of infection. CTLs from all of these five macaques rapidly selected for escape mutations in Gag, indicating that vaccine-induced CTLs successfully contained replication of the challenge virus. Interestingly, analysis of the escape variant selected in three vaccinees that share a major histocompatibility complex class I haplotype revealed that the escape variant virus was at a replicative disadvantage compared with SIVmac239. These findings suggested that the vaccine-induced CTLs had "crippled" the challenge virus. Our results indicate that vaccine induction of highly effective CTLs can result in the containment of replication of a highly pathogenic immunodeficiency virus.


Assuntos
Vacinas contra a AIDS/imunologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T Citotóxicos/imunologia , Replicação Viral/imunologia , Animais , Modelos Animais de Doenças , Genes env , Genes nef , Humanos , Macaca mulatta , Masculino , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia
17.
Angiogenesis ; 13(3): 203-10, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20458615

RESUMO

Sendai viral vector (SeV) is emerging as a promising vector for gene therapy. However, little information is available regarding the combination of SeV-mediated gene and mesenchymal stem cell (MSC) therapy in dealing with ischemic diseases. In this study, we infected SeV to the MSCs in vitro; and injected MSCs modified with SeV harboring human angiopoietin-1 gene (SeVhAng-1) into the ischemic limb of rats in vivo. We found SeV had high transductive efficiency to the MSCs. Both MSCs and SeVhAng-1-modified MSCs improved the blood flow recovery and increased the capillary density of the ischemic limb, compared with the control. However, in contrast to MSCs, SeVhAng-1-modified MSCs had a better improvement of blood flow recovery in the ischemic limb. We further found the ischemic limb injected with SeVhAng-1-modified MSCs had strong expression of p-Akt, which improved survival of MSCs injected into the ischemic limb. This indicated SeVhAng-1 modification enhanced angiogenetic effect of MSCs by both angiogenesis and cell protection. We conclude that SeVhAng-1-modified MSCs may serve as a more effective tool in dealing with ischemic limb disease.


Assuntos
Angiopoietina-1/genética , Angiopoietina-1/uso terapêutico , Extremidades/irrigação sanguínea , Isquemia/terapia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Vírus Sendai/genética , Animais , Capilares/metabolismo , Capilares/patologia , Extremidades/patologia , Terapia Genética , Vetores Genéticos/genética , Humanos , Injeções , Masculino , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Endogâmicos Lew , Fluxo Sanguíneo Regional , Análise de Sobrevida , Transdução Genética
18.
Biosci Biotechnol Biochem ; 74(11): 2293-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21071846

RESUMO

Sendai virus (SeV) is an enveloped virus with a non-segmented negative-strand RNA genome. SeV envelope fusion (F) glycoproteins play crucial roles in the viral life cycle in processes such as viral binding, assembly, and budding. In this study, we developed a viable recombinant SeV designated F-EGFP SeV/ΔF, in which the F protein was replaced by an F protein fused to EGFP at the carboxyl terminus. Living infected cells of the recombinant virus were directly visualized by green fluorescence. The addition of EGFP to the F protein maintained the activities of the F protein in terms of intracellular transport to the plasma membrane via the ER and the Golgi apparatus and fusion activity in the infected cells. These results suggest that this fluorescent SeV is a useful tool for studying the viral binding, assembly, and budding mechanisms of F proteins and the SeV life cycle in living infected cells.


Assuntos
Proteínas de Fluorescência Verde/genética , Vírus Sendai/genética , Proteínas do Envelope Viral/genética , Fluorescência , Transporte Proteico , Proteínas Recombinantes de Fusão , Projetos de Pesquisa , Proteínas Virais de Fusão/fisiologia
19.
Angiogenesis ; 12(3): 243-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19322669

RESUMO

Sendai virus vector is emerging as a promising vector for gene therapy, and angiopoietin-1 (Ang-1) has been reported to improve the blood flow recovery in the ischemic limb or heart. In this study, we constructed a human Ang-1-expressing Sendai viral vector (SeVhAng-1) and injected it into the ischemic limb of rats. We found that SeVhAng-1 improved the blood flow recovery and increased the capillary density of the ischemic limb, compared with the controls. We also found that SeVhAng-1 increased p-Akt during the early period of limb ischemia, and decreased apoptosis in ischemic limb. It suggests that SeVhAng-1 may serve as a potential therapeutic tool in ischemic limb disease.


Assuntos
Angiopoietina-1/administração & dosagem , Vetores Genéticos , Isquemia/terapia , Extremidade Inferior/irrigação sanguínea , Doenças Vasculares Periféricas/terapia , Vírus Sendai/genética , Angiopoietina-1/genética , Animais , Constrição Patológica/genética , Constrição Patológica/patologia , Constrição Patológica/terapia , Modelos Animais de Doenças , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Vetores Genéticos/fisiologia , Humanos , Artéria Ilíaca/patologia , Injeções Intramusculares , Isquemia/genética , Isquemia/patologia , Extremidade Inferior/patologia , Masculino , Doenças Vasculares Periféricas/genética , Doenças Vasculares Periféricas/patologia , Ratos , Ratos Endogâmicos Lew , Vírus Sendai/fisiologia
20.
Am J Physiol Heart Circ Physiol ; 297(5): H1685-96, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734356

RESUMO

Emerging evidence indicates that the tight communication between vascular endothelial cells and mural cells using platelet-derived growth factor (PDGF)-BB is essential for capillary stabilization during the angiogenic process. However, little is known about the related regulator that determines PDGF-BB expression. Using murine models of therapeutic neovascularization, we here show that a typical lymphangiogenic factor, vascular endothelial growth factor (VEGF)-C, is an essential regulator determining PDGF-BB expression for vascular stabilization via a paracrine mode of action. The blockade of VEGF type 3 receptor (VEGFR3) using neutralizing antibody AFL-4 abrogated FGF-2-mediated limb salvage and blood flow recovery in severely ischemic hindlimb. Interestingly, inhibition of VEGFR3 activity not only diminished lymphangiogenesis, but induced marked dilatation of capillary vessels, showing mural cell dissociation. In these mice, VEGF-C and PDGF-B were upregulated in the later phase after induced ischemia, on day 7, when exogenous FGF-2 expression had already declined, and blockade of VEGFR3 or PDGF-BB activities diminished PDGF-B or VEGF-C expression, respectively. These results clearly indicate that VEGF-C is a critical mediator, not only for lymphangiogenesis, but also for capillary stabilization, the essential molecular mechanism of communication between endothelial cells and mural cells during neovascularization.


Assuntos
Capilares/metabolismo , Isquemia/metabolismo , Linfangiogênese , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-sis/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Amputação Cirúrgica , Animais , Anticorpos/farmacologia , Becaplermina , Capilares/efeitos dos fármacos , Capilares/fisiopatologia , Bovinos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Retroalimentação Fisiológica , Fator 2 de Crescimento de Fibroblastos/biossíntese , Fator 2 de Crescimento de Fibroblastos/genética , Terapia Genética , Membro Posterior , Humanos , Isquemia/genética , Isquemia/fisiopatologia , Isquemia/terapia , Linfangiogênese/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Comunicação Parácrina , Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fluxo Sanguíneo Regional , Transdução de Sinais , Fatores de Tempo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa