Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Glycobiology ; 34(3)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109791

RESUMO

Glycans found on receptor tyrosine kinases (RTKs) have emerged as promising targets for cancer chemotherapy, aiming to address issues such as drug resistance. However, to effectively select the target glycans, it is crucial to define the structure and function of candidate glycans in advance. Through mass spectrometric analysis, this study presents a "glycoform atlas" of epidermal growth factor receptor 2 (ErbB2), an RTK targeted for the treatment of ErbB2-positive cancers. Our analysis provides an in-depth and site-specific glycosylation profile, including both asparagine- and serine/threonine-linked glycosylation. Molecular dynamics simulations of N-glycosylated ErbB2 incorporating the identified glycan structures suggested that the N-glycan at N124 on the long flexible loop in the N-terminal region plays a role in stabilizing the ErbB2 structure. Based on the model structures obtained from the simulations, analysis employing an ErbB2 mutant deficient in N-glycosylation at N124 exhibited a significantly shorter intracellular half-life and suppressed autophosphorylation compared to wild-type ErbB2. Moreover, a structural comparison between the N-glycosylated forms of ErbB2 and its structurally homologous receptor, epidermal growth factor receptor (EGFR), demonstrated distinct variations in the distribution and density of N-glycans across these two molecules. These findings provide valuable insights into the structural and functional implications of ErbB2 glycosylation and will contribute to facilitating the establishment of glycan-targeted therapeutic strategies for ErbB2-positive cancers.


Assuntos
Neoplasias , Humanos , Glicosilação , Fosforilação , Polissacarídeos/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1868(4): 130565, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38244702

RESUMO

N-glycosylation and proper processing of N-glycans are required for the function of membrane proteins including cell surface receptors. Fibroblast growth factor receptor (FGFR) is involved in a wide variety of biological processes including embryonic development, osteogenesis, angiogenesis, and cell proliferation. Human FGFR3 contains six potential N-glycosylation sites, however, the roles of glycosylation have not been elucidated. The site-specific profiles of N-glycans of the FGFR3 extracellular domain expressed and secreted by CHO-K1 cells were examined, and glycan occupancies and structures of four sites were determined. The results indicated that most sites were fully occupied by glycans, and the dominant populations were the complex type. By examining single N-glycan deletion mutants of FGFR3, it was found that N262Q mutation significantly increased the population with oligomannose-type N-glycans, which was localized in the endoplasmic reticulum. Protein stability assay suggested that fraction with oligomannose-type N-glycans in the N262Q mutant is more stable than those in the wild type and other mutants. Furthermore, it was found that ligand-independent phosphorylation was significantly upregulated in N262Q mutants with complex type N-glycans. The findings suggest that N-glycans on N262 of FGFR3 affect the intracellular localization and phosphorylation status of the receptor.


Assuntos
Fenômenos Biológicos , Polissacarídeos , Cricetinae , Animais , Humanos , Fosforilação , Glicosilação , Células CHO , Cricetulus , Polissacarídeos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo
3.
Sci Adv ; 10(28): eadl4913, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38985878

RESUMO

The pathophysiology of silicosis is poorly understood, limiting development of therapies for those who have been exposed to the respirable particle. We explored mechanisms of silica-induced pulmonary fibrosis in human lung samples collected from patients with occupational exposure to silica and in a longitudinal mouse model of silicosis using multiple modalities including whole-lung single-cell RNA sequencing and histological, biochemical, and physiologic assessments. In addition to pulmonary inflammation and fibrosis, intratracheal silica challenge induced osteoclast-like differentiation of alveolar macrophages and recruited monocytes, driven by induction of the osteoclastogenic cytokine, receptor activator of nuclear factor κΒ ligand (RANKL) in pulmonary lymphocytes, and alveolar type II cells. Anti-RANKL monoclonal antibody treatment suppressed silica-induced osteoclast-like differentiation in the lung and attenuated pulmonary fibrosis. We conclude that silica induces differentiation of pulmonary osteoclast-like cells leading to progressive lung injury, likely due to sustained elaboration of bone-resorbing proteases and hydrochloric acid. Interrupting osteoclast-like differentiation may therefore constitute a promising avenue for moderating lung damage in silicosis.


Assuntos
Diferenciação Celular , Osteoclastos , Fibrose Pulmonar , Dióxido de Silício , Silicose , Dióxido de Silício/toxicidade , Animais , Humanos , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fibrose Pulmonar/metabolismo , Camundongos , Silicose/patologia , Silicose/metabolismo , Silicose/etiologia , Diferenciação Celular/efeitos dos fármacos , Ligante RANK/metabolismo , Modelos Animais de Doenças , Masculino , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Macrófagos Alveolares/efeitos dos fármacos , Feminino
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa