Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
J Mol Biol ; 397(4): 957-66, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20184896

RESUMO

The PDZ protease DegS senses mislocalized outer membrane proteins and initiates the sigmaE pathway in the bacterial periplasm. This unfolded protein response pathway is activated by processing of the anti-sigma factor RseA by DegS and other proteases acting downstream of DegS. DegS mediates the rate-limiting step of sigma E induction and its activity must be highly specific and tightly regulated. While DegS is structurally and biochemically well studied, the determinants of its pronounced substrate specificity are unknown. We therefore performed swapping experiments by introducing elements of the homologous but unspecific PDZ protease DegP. Introduction of loop L2 of DegP into DegS converted the enzyme into a non-specific protease, while swapping of PDZ domains did not. Therefore, loop L2 of the protease domain is a key determinant of substrate specificity. Interestingly, swapping of loop L2 did not affect the tight regulation of DegS. In addition, the combined introduction of loop L2 and PDZ domain 1 of DegP into DegS converted DegS even further into a DegP-like protease. These and other data suggest that homologous enzymes with distinct activities and regulatory features can be converted by simple genetic modifications.


Assuntos
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação Genética , Especificidade por Substrato
3.
Mol Biosyst ; 5(9): 980-5, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19668863

RESUMO

Bacterial DegS is a regulatory protease that acts as a molecular stress sensor and initiates a periplasmic stress response pathway. Upon binding of misfolded proteins to its PDZ domain, the protease domain of DegS is allosterically activated, thereby initiating a signal cascade that results in the elevated expression of protein quality control factors. Although the structural basis of this activation mode has been elucidated previously, it is not yet fully understood if binding to the PDZ domain is sufficient for protease domain activation or if secondary interactions with the protease domain are required. Here, we demonstrate that tripeptidic small molecule activators which only bind to the PDZ domain are sufficient to trigger DegS activation. Furthermore, we show that the hydrophobicity of the peptidic small molecule activators is a critical determinant for efficient activation.


Assuntos
Proteínas de Bactérias/metabolismo , Oligopeptídeos/metabolismo , Sítio Alostérico , Proteínas de Bactérias/química , Interações Hidrofóbicas e Hidrofílicas , Peso Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Domínios PDZ , Fenilalanina/química , Dobramento de Proteína , Estresse Fisiológico/fisiologia
4.
J Biotechnol ; 143(3): 173-82, 2009 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-19583988

RESUMO

In experiments performed to identify transcriptional regulators of the tricarboxylic acid cycle of Corynebacterium glutamicum, the cAMP-dependent regulator GlxR and the regulators of acetate metabolism RamA and RamB were enriched by DNA affinity chromatography with the promoter region of the sdhCAB operon encoding succinate dehydrogenase. The binding of purified GlxR, RamA and RamB was verified by electrophoretic mobility shift assays and the regulatory effects of these proteins on sdhCAB gene expression were tested by promoter activity assays and SDH activity measurements. Evidence was obtained that GlxR functions as a repressor and RamA as an activator of sdhCAB expression, whereas RamB had no obvious influence under the conditions tested.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/enzimologia , AMP Cíclico/metabolismo , Óperon/genética , Proteínas Repressoras/metabolismo , Succinato Desidrogenase/genética , Transativadores/metabolismo , Transcrição Gênica , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Cromatografia de Afinidade , Corynebacterium glutamicum/genética , Primers do DNA , DNA Bacteriano/genética , DNA Intergênico/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Sítio de Iniciação de Transcrição
6.
Mol Microbiol ; 67(2): 305-22, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18047570

RESUMO

Corynebacterium glutamicum is a Gram-positive soil bacterium that prefers the simultaneous catabolism of different carbon sources rather than their sequential utilization. This type of metabolism requires an adaptation of the utilization rates to the overall metabolic capacity. Here we show how two functionally redundant GntR-type transcriptional regulators, designated GntR1 and GntR2, co-ordinately regulate gluconate catabolism and glucose uptake. GntR1 and GntR2 strongly repress the genes encoding gluconate permease (gntP), gluconate kinase (gntK), and 6-phosphogluconate dehydrogenase (gnd) and weakly the pentose phosphate pathway genes organized in the tkt-tal-zwf-opcA-devB cluster. In contrast, ptsG encoding the EII(Glc) permease of the glucose phosphotransferase system (PTS) is activated by GntR1 and GntR2. Gluconate and glucono-delta-lactone interfere with binding of GntR1 and GntR2 to their target promoters, leading to a derepression of the genes involved in gluconate catabolism and reduced ptsG expression. To our knowledge, this is the first example for gluconate-dependent transcriptional control of PTS genes. A mutant lacking both gntR1 and gntR2 shows a 60% lower glucose uptake rate and growth rate than the wild type when cultivated on glucose as sole carbon source. This growth defect can be complemented by plasmid-encoded GntR1 or GntR2.


Assuntos
Proteínas de Bactérias/metabolismo , Corynebacterium glutamicum/metabolismo , Gluconatos/metabolismo , Glucose/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sequência de Bases , Metabolismo dos Carboidratos , Corynebacterium glutamicum/enzimologia , Pegada de DNA , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Glucosefosfato Desidrogenase/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfogluconato Desidrogenase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Transcrição Gênica
7.
Genes Dev ; 21(20): 2659-70, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17938245

RESUMO

The unfolded protein response of Escherichia coli is triggered by the accumulation of unassembled outer membrane proteins (OMPs) in the cellular envelope. The PDZ-protease DegS recognizes these mislocalized OMPs and initiates a proteolytic cascade that ultimately leads to the sigmaE-driven expression of a variety of factors dealing with folding stress in the periplasm and OMP assembly. The general features of how OMPs activate the protease function of DegS have not yet been systematically addressed. Furthermore, it is unknown how the PDZ domain keeps the protease inactive in the resting state, which is of crucial importance for the functioning of the entire sigmaE stress response. Here we show in atomic detail how DegS is able to integrate the information of distinct stress signals that originate from different OMPs containing a -x-Phe C-terminal motif. A dedicated loop of the protease domain, loop L3, serves as a versatile sensor for allosteric ligands. L3 is capable of interacting differently with ligands but reorients in a conserved manner to activate DegS. Our data also indicate that the PDZ domain directly inhibits protease function in the absence of stress signals by wedging loop L3 in a conformation that ultimately disrupts the proteolytic site. Thus, the PDZ domain and loop L3 of DegS define a novel molecular switch allowing strict regulation of the sigmaE stress response system.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Deleção de Sequência , Fator sigma/química , Fator sigma/genética , Transdução de Sinais , Fatores de Transcrição/química , Fatores de Transcrição/genética
8.
Proc Natl Acad Sci U S A ; 99(6): 3458-63, 2002 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-11904409

RESUMO

The histidine containing phospho carrier protein (HPr) kinase/phosphatase is involved in carbon catabolite repression, mainly in Gram-positive bacteria. It is a bifunctional enzyme that phosphorylates Ser-46-HPr in an ATP-dependent reaction and dephosphorylates P-Ser-46-HPr. X-ray analysis of the full-length crystalline enzyme from Staphylococcus xylosus at a resolution of 1.95 A shows the enzyme to consist of two clearly separated domains that are assembled in a hexameric structure resembling a three-bladed propeller. The N-terminal domain has a betaalphabeta fold similar to a segment from enzyme I of the sugar phosphotransferase system and to the uridyl-binding portion of MurF; it is structurally organized in three dimeric modules exposed to form the propeller blades. Two unexpected phosphate ions associated with highly conserved residues were found in the N-terminal dimeric interface. The C-terminal kinase domain is similar to that of the Lactobacillus casei enzyme and is assembled in six copies to form the compact central hub of the propeller. Beyond previously reported similarity with adenylate kinase, we suggest evolutionary relationship with phosphoenolpyruvate carboxykinase. In addition to a phosphate ion in the phosphate-binding loop of the kinase domain, we have identified a second phosphate-binding site that, by comparison with adenylate kinases, we believe accommodates a product/substrate phosphate, normally covalently linked to Ser-46 of HPr. Thus, we propose that our structure represents a product/substrate mimic of the kinase/phosphatase reaction.


Assuntos
Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Staphylococcus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias , Sítios de Ligação , Cristalografia por Raios X , Evolução Molecular , Modelos Moleculares , Mimetismo Molecular , Dados de Sequência Molecular , Fosfatos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Alinhamento de Sequência
9.
J Bacteriol ; 186(17): 5906-18, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15317796

RESUMO

A high-resolution structure of the histidine-containing phosphocarrier protein (HPr) from Staphylococcus aureus was obtained by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy on the basis of 1,766 structural restraints. Twenty-three hydrogen bonds in HPr could be directly detected by polarization transfer from the amide nitrogen to the carbonyl carbon involved in the hydrogen bond. Differential line broadening was used to characterize the interaction of HPr with the HPr kinase/phosphorylase (HPrK/P) of Staphylococcus xylosus, which is responsible for phosphorylation-dephosphorylation of the hydroxyl group of the regulatory serine residue at position 46. The dissociation constant Kd was determined to be 0.10 +/- 0.02 mM at 303 K from the NMR data, assuming independent binding. The data are consistent with a stoichiometry of 1 HPr molecule per HPrK/P monomer in solution. Using transversal relaxation optimized spectroscopy-heteronuclear single quantum correlation, we mapped the interaction site of the two proteins in the 330-kDa complex. As expected, it covers the region around Ser46 and the small helix b following this residue. In addition, HPrK/P also binds to the second phosphorylation site of HPr at position 15. This interaction may be essential for the recognition of the phosphorylation state of His15 and the phosphorylation-dependent regulation of the kinase/phosphorylase activity. In accordance with this observation, the recently published X-ray structure of the HPr/HPrK core protein complex from Lactobacillus casei shows interactions with the two phosphorylation sites. However, the NMR data also suggest differences for the full-length protein from S. xylosus: there are no indications for an interaction with the residues preceding the regulatory Ser46 residue (Thr41 to Lys45) in the protein of S. xylosus. In contrast, it seems to interact with the C-terminal helix of HPr in solution, an interaction which is not observed for the complex of HPr with the core of HPrK/P of L. casei in crystals.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Mapeamento de Interação de Proteínas , Proteínas Serina-Treonina Quinases/química , Staphylococcus aureus/metabolismo , Aminoácidos/fisiologia , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Lacticaseibacillus casei/metabolismo , Ressonância Magnética Nuclear Biomolecular , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/isolamento & purificação , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo
10.
Proc Natl Acad Sci U S A ; 99(21): 13442-7, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12359880

RESUMO

In most Gram-positive bacteria, serine-46-phosphorylated HPr (P-Ser-HPr) controls the expression of numerous catabolic genes ( approximately 10% of their genome) by acting as catabolite corepressor. HPr kinase/phosphorylase (HprK/P), the bifunctional sensor enzyme for catabolite repression, phosphorylates HPr, a phosphocarrier protein of the sugar-transporting phosphoenolpyruvate/glycose phosphotransferase system, in the presence of ATP and fructose-1,6-bisphosphate but dephosphorylates P-Ser-HPr when phosphate prevails over ATP and fructose-1,6-bisphosphate. We demonstrate here that P-Ser-HPr dephosphorylation leads to the formation of HPr and pyrophosphate. HprK/P, which binds phosphate at the same site as the beta phosphate of ATP, probably uses the inorganic phosphate to carry out a nucleophilic attack on the phosphoryl bond in P-Ser-HPr. HprK/P is the first enzyme known to catalyze P-protein dephosphorylation via this phospho-phosphorolysis mechanism. This reaction is reversible, and at elevated pyrophosphate concentrations, HprK/P can use pyrophosphate to phosphorylate HPr. Growth of Bacillus subtilis on glucose increased intracellular pyrophosphate to concentrations ( approximately 6 mM), which in in vitro tests allowed efficient pyrophosphate-dependent HPr phosphorylation. To effectively dephosphorylate P-Ser-HPr when glucose is exhausted, the pyrophosphate concentration in the cells is lowered to 1 mM. In B. subtilis, this might be achieved by YvoE. This protein exhibits pyrophosphatase activity, and its gene is organized in an operon with hprK.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Evolução Biológica , Difosfatos/metabolismo , Lacticaseibacillus casei/enzimologia , Lacticaseibacillus casei/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/química , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa