Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28988770

RESUMO

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Assuntos
Adenosina Trifosfatases/metabolismo , Cromossomos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eucariotos/metabolismo , Proteínas Fúngicas/metabolismo , Complexos Multiproteicos/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Chaetomium/metabolismo , Cromossomos/química , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA/química , Eucariotos/química , Proteínas Fúngicas/química , Células HeLa , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
2.
Mol Cell ; 74(6): 1175-1188.e9, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31226277

RESUMO

The condensin protein complex plays a key role in the structural organization of genomes. How the ATPase activity of its SMC subunits drives large-scale changes in chromosome topology has remained unknown. Here we reconstruct, at near-atomic resolution, the sequence of events that take place during the condensin ATPase cycle. We show that ATP binding induces a conformational switch in the Smc4 head domain that releases its hitherto undescribed interaction with the Ycs4 HEAT-repeat subunit and promotes its engagement with the Smc2 head into an asymmetric heterodimer. SMC head dimerization subsequently enables nucleotide binding at the second active site and disengages the Brn1 kleisin subunit from the Smc2 coiled coil to open the condensin ring. These large-scale transitions in the condensin architecture lay out a mechanistic path for its ability to extrude DNA helices into large loop structures.


Assuntos
Adenosina Trifosfatases/química , Trifosfato de Adenosina/química , Proteínas de Transporte/química , Chaetomium/genética , Proteínas Cromossômicas não Histona/química , Proteínas de Ligação a DNA/química , DNA/química , Complexos Multiproteicos/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Chaetomium/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Expressão Gênica , Células HeLa , Humanos , Modelos Moleculares , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
3.
Mol Cell ; 68(5): 860-871.e7, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220653

RESUMO

DNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition. PARP1 activation suppresses this inhibitory interaction. Crucially, release from auto-inhibition requires a poly-ADP-ribose (PAR) binding macrodomain. We identify tri-ADP-ribose as a potent PAR-mimic and synthetic allosteric effector that abrogates ATPase-macrodomain interactions, promotes an ungated conformation, and activates the remodeler's ATPase. ALC1 fragments lacking the regulatory macrodomain relax chromatin in vivo without requiring PARP1 activation. Further, the ATPase restricts the macrodomain's interaction with PARP1 under non-DNA damage conditions. Somatic cancer mutants disrupt ALC1's auto-inhibition and activate chromatin remodeling. Our data show that the NAD+-metabolite and nucleic acid PAR triggers ALC1 to drive chromatin relaxation. Modular allostery in this oncogene tightly controls its robust, DNA-damage-dependent activation.


Assuntos
Montagem e Desmontagem da Cromatina , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/enzimologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Regulação Alostérica , Sítios de Ligação , Linhagem Celular Tumoral , DNA Helicases/química , DNA Helicases/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Ativação Enzimática , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Conformação de Ácido Nucleico , Poli(ADP-Ribose) Polimerase-1/química , Poli(ADP-Ribose) Polimerase-1/genética , Poli ADP Ribosilação , Poli Adenosina Difosfato Ribose/química , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Tempo
4.
Nature ; 499(7456): 111-4, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23698368

RESUMO

Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the α1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.


Assuntos
Chaetomium/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Motivos de Aminoácidos , Sequência Conservada , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Replicação do DNA , Histonas/química , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Nucleossomos/química , Nucleossomos/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato
5.
Genes Dev ; 25(17): 1835-46, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21896656

RESUMO

The silent information regulator 2/3/4 (Sir2/3/4) complex is required for gene silencing at the silent mating-type loci and at telomeres in Saccharomyces cerevisiae. Sir3 is closely related to the origin recognition complex 1 subunit and consists of an N-terminal bromo-adjacent homology (BAH) domain and a C-terminal AAA(+) ATPase-like domain. Here, through a combination of structure biology and exhaustive mutagenesis, we identified unusual, silencing-specific features of the AAA(+) domain of Sir3. Structural analysis of the putative nucleotide-binding pocket in this domain reveals a shallow groove that would preclude nucleotide binding. Mutation of this site has little effect on Sir3 function in vivo. In contrast, several surface regions are shown to be necessary for the Sir3 silencing function. Interestingly, the Sir3 AAA(+) domain is shown here to bind chromatin in vitro in a manner sensitive to histone H3K79 methylation. Moreover, an exposed loop on the surface of this Sir3 domain is found to interact with Sir4. In summary, the unique folding of this conserved Sir3 AAA(+) domain generates novel surface regions that mediate Sir3-Sir4 and Sir3-nucleosome interactions, both being required for the proper assembly of heterochromatin in living cells.


Assuntos
Inativação Gênica , Histonas/metabolismo , Modelos Moleculares , Saccharomyces cerevisiae , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Alelos , Cromatina/metabolismo , Metilação de DNA , Histonas/química , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
6.
EMBO J ; 32(3): 437-49, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23299941

RESUMO

Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase-like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C-terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix-turn-helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self-association mediated by this domain is essential for holo-Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in sir3Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.


Assuntos
Inativação Gênica/fisiologia , Heterocromatina/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Cristalização , Primers do DNA/genética , Dimerização , Evolução Molecular , Teste de Complementação Genética , Heterocromatina/genética , Imunoprecipitação , Dados de Sequência Molecular , Mutagênese , Nucleossomos/metabolismo , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae , Alinhamento de Sequência , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
7.
PLoS Genet ; 7(7): e1002206, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21829383

RESUMO

Eukaryotic cells respond to genomic and environmental stresses, such as DNA damage and heat shock (HS), with the synthesis of poly-[ADP-ribose] (PAR) at specific chromatin regions, such as DNA breaks or HS genes, by PAR polymerases (PARP). Little is known about the role of this modification during cellular stress responses. We show here that the nucleosome remodeler dMi-2 is recruited to active HS genes in a PARP-dependent manner. dMi-2 binds PAR suggesting that this physical interaction is important for recruitment. Indeed, a dMi-2 mutant unable to bind PAR does not localise to active HS loci in vivo. We have identified several dMi-2 regions which bind PAR independently in vitro, including the chromodomains and regions near the N-terminus containing motifs rich in K and R residues. Moreover, upon HS gene activation, dMi-2 associates with nascent HS gene transcripts, and its catalytic activity is required for efficient transcription and co-transcriptional RNA processing. RNA and PAR compete for dMi-2 binding in vitro, suggesting a two step process for dMi-2 association with active HS genes: initial recruitment to the locus via PAR interaction, followed by binding to nascent RNA transcripts. We suggest that stress-induced chromatin PARylation serves to rapidly attract factors that are required for an efficient and timely transcriptional response.


Assuntos
Adenosina Trifosfatases/metabolismo , Autoantígenos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica , Resposta ao Choque Térmico/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Estresse Fisiológico , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Autoantígenos/genética , Proteínas de Drosophila/genética , Modelos Biológicos , Dados de Sequência Molecular , Poli Adenosina Difosfato Ribose/metabolismo , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas , RNA/genética , RNA/metabolismo , Alinhamento de Sequência , Transcrição Gênica
8.
Science ; 376(6597): 1087-1094, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653469

RESUMO

Structural maintenance of chromosomes (SMC) protein complexes structure genomes by extruding DNA loops, but the molecular mechanism that underlies their activity has remained unknown. We show that the active condensin complex entraps the bases of a DNA loop transiently in two separate chambers. Single-molecule imaging and cryo-electron microscopy suggest a putative power-stroke movement at the first chamber that feeds DNA into the SMC-kleisin ring upon adenosine triphosphate binding, whereas the second chamber holds on upstream of the same DNA double helix. Unlocking the strict separation of "motor" and "anchor" chambers turns condensin from a one-sided into a bidirectional DNA loop extruder. We conclude that the orientation of two topologically bound DNA segments during the SMC reaction cycle determines the directionality of DNA loop extrusion.


Assuntos
Adenosina Trifosfatases , Proteínas de Ligação a DNA , DNA , Complexos Multiproteicos , Adenosina Trifosfatases/química , Microscopia Crioeletrônica , DNA/química , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Conformação de Ácido Nucleico , Imagem Individual de Molécula
9.
EMBO J ; 26(20): 4402-12, 2007 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-17882261

RESUMO

Coactivator-associated arginine methyltransferase (CARM1) is a transcriptional coactivator that methylates Arg17 and Arg26 in histone H3. CARM1 contains a conserved protein arginine methyltransferase (PRMT) catalytic core flanked by unique pre- and post-core regions. The crystal structures of the CARM1 catalytic core in the apo and holo states reveal cofactor-dependent formation of a substrate-binding groove providing a specific access channel for arginine to the active site. The groove is supported by the first eight residues of the post-core region (C-extension), not present in other PRMTs. In vitro methylation assays show that the C-extension is essential for all histone H3 methylation activity, whereas the pre-core region is required for methylation of Arg26, but not Arg17. Kinetic analysis shows Arg17 methylation is potentiated by pre-acetylation of Lys18, and this is reflected in k(cat) rather than K(m). Together with the absence of specificity subsites in the structure, this suggests an electrostatic sensing mechanism for communicating the modification status of vicinal residues as part of the syntax of the 'histone code.'


Assuntos
Histonas/química , Proteína-Arginina N-Metiltransferases/química , Sequência de Aminoácidos , Animais , Arginina/química , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos
10.
Nat Struct Mol Biol ; 27(8): 743-751, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32661420

RESUMO

Complexes containing a pair of structural maintenance of chromosomes (SMC) family proteins are fundamental for the three-dimensional (3D) organization of genomes in all domains of life. The eukaryotic SMC complexes cohesin and condensin are thought to fold interphase and mitotic chromosomes, respectively, into large loop domains, although the underlying molecular mechanisms have remained unknown. We used cryo-EM to investigate the nucleotide-driven reaction cycle of condensin from the budding yeast Saccharomyces cerevisiae. Our structures of the five-subunit condensin holo complex at different functional stages suggest that ATP binding induces the transition of the SMC coiled coils from a folded-rod conformation into a more open architecture. ATP binding simultaneously triggers the exchange of the two HEAT-repeat subunits bound to the SMC ATPase head domains. We propose that these steps result in the interconversion of DNA-binding sites in the catalytic core of condensin, forming the basis of the DNA translocation and loop-extrusion activities.


Assuntos
Proteínas de Transporte/química , Proteínas Cromossômicas não Histona/química , Proteínas Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/ultraestrutura , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
11.
Curr Biol ; 28(21): R1266-R1281, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30399354

RESUMO

Protein complexes built of structural maintenance of chromosomes (SMC) and kleisin subunits, including cohesin, condensin and the Smc5/6 complex, are master organizers of genome architecture in all kingdoms of life. How these large ring-shaped molecular machines use the energy of ATP hydrolysis to change the topology of chromatin fibers has remained a central unresolved question of chromosome biology. A currently emerging concept suggests that the common principle that underlies the essential functions of SMC protein complexes in the control of gene expression, chromosome segregation or DNA damage repair is their ability to expand DNA into large loop structures. Here, we review the current knowledge about the biochemical and structural properties of SMC protein complexes that might enable them to extrude DNA loops and compare their action to other motor proteins and nucleic acid translocases. We evaluate the currently predominant models of active loop extrusion and propose a detailed version of a 'scrunching' model, which reconciles much of the available mechanistic data and provides an elegant explanation for how SMC protein complexes fulfill an array of seemingly diverse tasks during the organization of genomes.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromossomos/fisiologia , Complexos Multiproteicos/fisiologia , Proteínas de Transporte/genética , Proteínas Cromossômicas não Histona/genética , Humanos
12.
J Cell Biol ; 217(7): 2383-2401, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29735745

RESUMO

Although the formation of rod-shaped chromosomes is vital for the correct segregation of eukaryotic genomes during cell divisions, the molecular mechanisms that control the chromosome condensation process have remained largely unknown. Here, we identify the C2H2 zinc-finger transcription factor Zas1 as a key regulator of mitotic condensation dynamics in a quantitative live-cell microscopy screen of the fission yeast Schizosaccharomyces pombe By binding to specific DNA target sequences in their promoter regions, Zas1 controls expression of the Cnd1 subunit of the condensin protein complex and several other target genes, whose combined misregulation in zas1 mutants results in defects in chromosome condensation and segregation. Genetic and biochemical analysis reveals an evolutionarily conserved transactivation domain motif in Zas1 that is pivotal to its function in gene regulation. Our results suggest that this motif, together with the Zas1 C-terminal helical domain to which it binds, creates a cis/trans switch module for transcriptional regulation of genes that control chromosome condensation.


Assuntos
Proteínas de Ciclo Celular/genética , Cromossomos Fúngicos/genética , Mitose/genética , Proteínas de Schizosaccharomyces pombe/genética , Adenosina Trifosfatases/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Complexos Multiproteicos/genética , Mutação , Schizosaccharomyces/genética
13.
Cell Rep ; 14(8): 1813-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26904946

RESUMO

Structural maintenance of chromosomes (SMC) protein complexes, including cohesin and condensin, play key roles in the regulation of higher-order chromosome organization. Even though SMC proteins are thought to mechanistically determine the function of the complexes, their native conformations and dynamics have remained unclear. Here, we probe the topology of Smc2-Smc4 dimers of the S. cerevisiae condensin complex with high-speed atomic force microscopy (AFM) in liquid. We show that the Smc2-Smc4 coiled coils are highly flexible polymers with a persistence length of only ∼ 4 nm. Moreover, we demonstrate that the SMC dimers can adopt various architectures that interconvert dynamically over time, and we find that the SMC head domains engage not only with each other, but also with the hinge domain situated at the other end of the ∼ 45-nm-long coiled coil. Our findings reveal structural properties that provide insights into the molecular mechanics of condensin complexes.


Assuntos
Proteínas de Transporte/química , Proteínas Cromossômicas não Histona/química , Cromossomos Fúngicos/química , Proteínas Nucleares/química , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/ultraestrutura , Expressão Gênica , Processamento de Imagem Assistida por Computador , Microscopia de Força Atômica/métodos , Simulação de Dinâmica Molecular , Imagem Molecular , Método de Monte Carlo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Domínios Proteicos , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Nat Struct Mol Biol ; 20(4): 508-14, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23474712

RESUMO

ADP-ribosylation is a reversible post-translational modification with wide-ranging biological functions in all kingdoms of life. A variety of enzymes use NAD(+) to transfer either single or multiple ADP-ribose (ADPr) moieties onto distinct amino acid substrates, often in response to DNA damage or other stresses. Poly-ADPr-glycohydrolase readily reverses poly-ADP-ribosylation induced by the DNA-damage sensor PARP1 and other enzymes, but it does not remove the most proximal ADPr linked to the target amino acid. Searches for enzymes capable of fully reversing cellular mono-ADP-ribosylation back to the unmodified state have proved elusive, which leaves a gap in the understanding of this modification. Here, we identify a family of macrodomain enzymes present in viruses, yeast and animals that reverse cellular ADP-ribosylation by acting on mono-ADP-ribosylated substrates. Our discoveries establish the complete reversibility of PARP-catalyzed cellular ADP-ribosylation as a regulatory modification.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Biocatálise , Modelos Moleculares , Dados de Sequência Molecular , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos
15.
Curr Opin Struct Biol ; 22(6): 721-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22985748

RESUMO

ADP-ribosylation is a post-translational modification of proteins that occurs mostly in response to cellular stress and is catalysed by members of the diverse poly-ADP-ribose (PAR) polymerase (PARP/ARTD) family. The founding member of the family, PARP1, is best recognized for its function as a sensor of DNA strand lesions, but ADP-ribosylation has been implicated in transcriptional regulation, chromatin dynamics, telomere maintenance, apoptosis and neuronal signalling. Here we summarize a number of exciting recent breakthroughs in our understanding of the structural and mechanistic aspects of how PARP1 recognizes DNA, how PARPs are regulated, how ADP-ribose modifications are set onto specific targets and how the cellular machinery recognizes this elusive post-translational modification.


Assuntos
ADP Ribose Transferases/metabolismo , Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Transdução de Sinais , Animais , Biocatálise , Ativação Enzimática , Humanos , Especificidade por Substrato
16.
Nat Struct Mol Biol ; 19(7): 685-692, 2012 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-22683995

RESUMO

Poly(ADP-ribose) polymerase 1 (PARP1) is a primary DNA damage sensor whose (ADP-ribose) polymerase activity is acutely regulated by interaction with DNA breaks. Upon activation at sites of DNA damage, PARP1 modifies itself and other proteins by covalent addition of long, branched polymers of ADP-ribose, which in turn recruit downstream DNA repair and chromatin remodeling factors. PARP1 recognizes DNA damage through its N-terminal DNA-binding domain (DBD), which consists of a tandem repeat of an unusual zinc-finger (ZnF) domain. We have determined the crystal structure of the human PARP1-DBD bound to a DNA break. Along with functional analysis of PARP1 recruitment to sites of DNA damage in vivo, the structure reveals a dimeric assembly whereby ZnF1 and ZnF2 domains from separate PARP1 molecules form a strand-break recognition module that helps activate PARP1 by facilitating its dimerization and consequent trans-automodification.


Assuntos
Dano ao DNA , Poli(ADP-Ribose) Polimerases/metabolismo , Dedos de Zinco , DNA/metabolismo , Dimerização , Modelos Moleculares , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/química
17.
Structure ; 19(10): 1351-3, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22000507

RESUMO

Our understanding of poly-ADP-ribosylation as a posttranslational modification was limited by the lack of structural information on poly-ADP-ribose (PAR) hydrolysing enzymes. A recent study in Nature (Slade et al., 2011) reports the structure of PAR glycohydrolase (PARG), revealing unexpected similarity to the ubiquitous ADP-ribose-binding macrodomains.

19.
Mol Cell ; 28(3): 371-85, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17996702

RESUMO

The retinoblastoma susceptibility protein, Rb, has a key role in regulating cell-cycle progression via interactions involving the central "pocket" and C-terminal regions. While the N-terminal domain of Rb is dispensable for this function, it is nonetheless strongly conserved and harbors missense mutations found in hereditary retinoblastoma, indicating that disruption of its function is oncogenic. The crystal structure of the Rb N-terminal domain (RbN), reveals a globular entity formed by two rigidly connected cyclin-like folds. The similarity of RbN to the A and B boxes of the Rb pocket domain suggests that Rb evolved through domain duplication. Structural and functional analysis provides insight into oncogenicity of mutations in RbN and identifies a unique phosphorylation-regulated site of protein interaction. Additionally, this analysis suggests a coherent conformation for the Rb holoprotein in which RbN and pocket domains directly interact, and which can be modulated through ligand binding and possibly Rb phosphorylation.


Assuntos
Proteína do Retinoblastoma/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Ciclo Celular , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Retinoblastoma/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/fisiologia
20.
J Biol Chem ; 278(20): 17625-35, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12626519

RESUMO

Myocyte enhancer factor 2 (MEF2) proteins play a pivotal role in the differentiation of cardiac and skeletal muscle cells. MEF2 factors are regulated by histone deacetylase enzymes such as histone deacetylase 5 (HDAC5). HDAC5 in turn is responsive to Ca(2+) signaling mediated by the intracellular calcium sensor calmodulin. Here a combination of proteolytic fragmentation, matrix-assisted laser desorption ionization mass spectrometry, Edman degradation, circular dichroism, gel filtration, and surface plasmon resonance studies is utilized to define and characterize a stable core domain of HDAC5 and to examine its interactions with MEF2a and calmodulin. Results from real time binding experiments provide evidence for direct interaction of Ca(2+)/calmodulin with HDAC5 inhibiting MEF2a association with this enzyme.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inibidores de Histona Desacetilases , Histona Desacetilases/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Calmodulina/química , Células Cultivadas , Cromatografia em Gel , Dicroísmo Circular , Proteínas de Ligação a DNA/antagonistas & inibidores , Ácido Egtázico/farmacologia , Humanos , Cinética , Proteínas de Domínio MADS , Fatores de Transcrição MEF2 , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fatores de Regulação Miogênica , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Fatores de Transcrição/antagonistas & inibidores , Tripsina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa