Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Reprod Biomed Online ; 48(4): 103735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402676

RESUMO

RESEARCH QUESTION: Would the use of the intracytoplasmic sperm injection (ICSI) position detector (IPD) make it possible to identify the optimal puncture position on oolemma during Piezo-ICSI and reduce oocyte degeneration and unintentional membrane rupture (UMR)? DESIGN: This sibling oocyte study included 917 inseminated oocytes from 113 infertile patients undergoing Piezo-ICSI. Oocytes were randomly divided into two groups: with or without IPD. The rates of UMR, degeneration, fertilization and embryonic development were compared between the two groups. As a secondary analysis, non-IPD oocytes were retrospectively assessed as appropriate or non-appropriate injection sites and analysed alongside prospective 'appropriate' injections. RESULTS: The rates of UMR (7.0% versus 12.9%, P = 0.004) and degeneration (2.4% versus 6.1%, P < 0.01 = 0.008) were significantly lower in the IPD group than in the non-IPD group. No significant differences, however, were observed in the rates of fertilization (two pronuclei, 83.8% versus 78.9%), blastocyst formation (48.5% versus 48.8%) or good-quality blastocysts (22.5% versus 20.5%). Additionally, no significant differences were observed in the rates of pregnancy (29.4% versus 35.1%) or live births (26.5% versus 29.7%) in a single embryo transfer setting with or without IPD. Comparing all 'appropriate' injections with 'non-appropriate' injections also showed a significantly decreased rate of UMR and degeneration (both P ≤ 0.001). CONCLUSIONS: The present study demonstrated that a real-time image analysis during Piezo-ICSI markedly reduced oocyte degeneration by avoiding areas associated with a high risk of UMR. Therefore, IPD may increase the number of embryos available for treatment.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Gravidez , Feminino , Humanos , Masculino , Injeções de Esperma Intracitoplásmicas/métodos , Estudos Prospectivos , Estudos Retrospectivos , Oócitos , Punções , Taxa de Gravidez , Fertilização in vitro
2.
Reprod Biomed Online ; 46(1): 46-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36307354

RESUMO

RESEARCH QUESTION: One of the problems during the intracytoplasmic sperm injection (ICSI) procedure is unintentional membrane rupture (UMR), which often predisposes to subsequent oocyte degeneration. Can the ICSI Position Detector (IPD) be useful in identifying the optimal puncture location to prevent UMR during ICSI? DESIGN: A total of 709 mature oocytes were included. Conventional ICSI was carried out and images were recorded by IPD; these were analysed retrospectively. RESULTS: Inseminated oocytes were retrospectively grouped according to the IPD, irrespective of whether oolemma was punctured at an area in which UMR is likely (non-appropriate group) or unlikely (appropriate group). In the appropriate group, rates of UMR (5.3% versus 18.2%) and degeneration (2.5% versus 8.7%) were significantly lower than those of the non-appropriate group, whereas rate of fertilization (87.1% versus 69.7%) was significantly higher than those of the non-appropriate group, respectively (P < 0.001). These differences remained even after propensity score matching to adjust for potential differences in characteristics between appropriate and non-appropriate groups. CONCLUSIONS: This study demonstrated that the IPD is useful to identify the optimal puncture location to circumvent UMR during the ICSI procedure, resulting in reduced UMR and oocyte degeneration, thereby, generating more embryos available for transfer or cryopreservation.


Assuntos
Fertilização in vitro , Injeções de Esperma Intracitoplásmicas , Masculino , Animais , Fertilização in vitro/métodos , Estudos Retrospectivos , Sêmen , Oócitos , Punções
3.
J Biol Chem ; 297(1): 100803, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022224

RESUMO

The transcriptional coactivator with PDZ-binding motif (TAZ) (WWTR1) induces epithelial-mesenchymal transition and enhances drug resistance in multiple cancers. TAZ has been shown to interact with transcription factors in the nucleus, but when phosphorylated, translocates to the cytoplasm and is degraded through proteasomes. Here, we identified a compound TAZ inhibitor 4 (TI-4) that shifted TAZ localization to the cytoplasm independently of its phosphorylation. We used affinity beads to ascertain a putative target of TI-4, chromosomal segregation 1 like (CSE1L), which is known to be involved in the recycling of importin α and as a biomarker of cancer malignancy. We found that TI-4 suppressed TAZ-mediated transcription in a CSE1L-dependent manner. CSE1L overexpression increased nuclear levels of TAZ, whereas CSE1L silencing delayed its nuclear import. We also found via the in vitro coimmunoprecipitation experiments that TI-4 strengthened the interaction between CSE1L and importin α5 and blocked the binding of importin α5 to TAZ. WWTR1 silencing attenuated CSE1L-promoted colony formation, motility, and invasiveness of human lung cancer and glioblastoma cells. Conversely, CSE1L silencing blocked TAZ-promoted colony formation, motility, and invasiveness in human lung cancer and glioblastoma cells. In human cancer tissues, the expression level of CSE1L was found to correlate with nuclear levels of TAZ. These findings support that CSE1L promotes the nuclear accumulation of TAZ and enhances malignancy in cancer cells.


Assuntos
Núcleo Celular/metabolismo , Proteína de Suscetibilidade a Apoptose Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Transativadores/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Modelos Biológicos , Invasividade Neoplásica , Neoplasias/genética , Fosforilação , Fotodegradação , Ligação Proteica , Transporte Proteico , Frações Subcelulares/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Ensaio Tumoral de Célula-Tronco , alfa Carioferinas/metabolismo
4.
Cancer Sci ; 113(4): 1305-1320, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35102644

RESUMO

Yes-associated protein 1 (YAP1) interacts with TEAD transcription factor in the nucleus and upregulates TEAD-target genes. YAP1 is phosphorylated by large tumor suppressor (LATS) kinases, the core kinases of the Hippo pathway, at 5 serine residues and is sequestered and degraded in the cytoplasm. In human cancers with the dysfunction of the Hippo pathway, YAP1 becomes hyperactive and confers malignant properties to cancer cells. We have observed that cold shock induces protein kinase C (PKC)-mediated phosphorylation of YAP1. PKC phosphorylates YAP1 at 3 serine residues among LATS-mediate phosphorylation sites. Importantly, PKC activation recruits YAP1 to the cytoplasm even in LATS-depleted cancer cells and reduces the cooperation with TEAD. PKC activation induces promyelocytic leukemia protein-mediated SUMOylation of YAP1. SUMOylated YAP1 remains in the nucleus, binds to p73, and promotes p73-target gene transcription. Bryostatin, a natural anti-neoplastic reagent that activates PKC, induces YAP1/p73-mediated apoptosis in cancer cells. Bryostatin reverses malignant transformation caused by the depletion of LATS kinases. Therefore, bryostatin and other reagents that activate PKC are expected to control cancers with the dysfunction of the Hippo pathway.


Assuntos
Transdução de Sinais , Humanos , Briostatinas , Fosfoproteínas/metabolismo , Proteína Quinase C/metabolismo , Serina , Transdução de Sinais/genética , Proteínas de Sinalização YAP
5.
Genes Cells ; 26(10): 798-806, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34428327

RESUMO

Mob1/phocein family proteins are conserved from yeast to mammals. Human has four MOB genes, MOB1, 2, 3 and 4. Human MOB1 protein, which is a component of the Hippo pathway, is involved in the inhibition of yes-associated protein (YAP1) through large tumor suppressor (LATS) kinases and plays a tumor suppressive role. In contrast, MOB4 activates YAP1. Caernorhabditis elegans (C. elegans) also has four MOB genes. Moreover, C. elegans has homologues of YAP1 (Ce_YAP-1) and LATS kinases (WTS-1). Nevertheless, our previous study revealed that the Hippo pathway is not conserved in C. elegans and that heat shock activates Ce_YAP-1. We also reported that Ce_YAP-1 is involved in the regulation of life span, healthy lifespan and thermotolerance. In this study, we raised a question whether and how C. elegans homologue of MOB4 (Ce_MOB-4) is involved in the regulation of Ce_YAP-1. Ce_MOB-4 is ubiquitously expressed in adult worms. This expression pattern is similar to that of Ce_YAP-1. mob-4 loss-of-function mutants show short life span, short health life span and compromise thermotolerance. However, heat shock activates Ce_YAP-1 in mob-4 mutant. In conclusion, the role of MOB4 in the activation of YAP1 is not conserved in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Termotolerância , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Via de Sinalização Hippo , Humanos , Longevidade/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Sinalização YAP
6.
Genes Cells ; 26(12): 999-1013, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34652874

RESUMO

RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. We have reported using human cancer cell lines that RASSF6 induces apoptosis and cell cycle arrest via p53 and plays tumor suppressive roles. In this study, we generated Rassf6 knockout mice by CRISPR/Cas technology. Contrary to our expectation, Rassf6 knockout mice were apparently healthy. However, Rassf6-null mouse embryonic fibroblasts (MEF) were resistant against ultraviolet (UV)-induced apoptosis/cell cycle arrest and senescence. UV-induced p53-target gene expression was compromised, and DNA repair was delayed in Rassf6-null MEF. More importantly, KRAS active mutant promoted the colony formation of Rassf6-null MEF but not the wild-type MEF. RNA sequencing analysis showed that NF-κB signaling was enhanced in Rassf6-null MEF. Consistently, 7,12-dimethylbenz(a)anthracene (DMBA) induced skin inflammation in Rassf6 knockout mice more remarkably than in the wild-type mice. Hence, Rassf6 deficiency not only compromises p53 function but also enhances NF-κB signaling to lead to oncogenesis.


Assuntos
Proteínas Monoméricas de Ligação ao GTP , NF-kappa B , Animais , Apoptose , Proteínas Reguladoras de Apoptose , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Supressora de Tumor p53/genética
7.
Exp Cell Res ; 399(1): 112439, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33359469

RESUMO

Yes-associated protein 1 (YAP1), a co-transcription activator, shuttles between the cytoplasm and the nucleus. Phosphorylation by large tumor suppressor kinases (LATS1/2) is the major determinant of YAP1 subcellular localization. Unphosphorylated YAP1 interacts with transcription factors in the nucleus and regulates gene transcription, while phosphorylated YAP1 is trapped in the cytoplasm and is degraded. We found that when U2OS and HeLa cells are exposed to 42 °C, YAP1 enters the nucleus within 30 min and returns to the cytoplasm at 4 h. SRC and HSP90 are involved in nuclear accumulation and return to the cytoplasm, respectively. Upon heat shock, LATS2 forms aggregates including protein phosphatase 1 and is dephosphorylated and inactivated. SRC activation is necessary for the formation of aggregates, while HSP90 is required for their dissociation. YAP1 is involved in heat shock-induced NF-κB signaling. Mechanistically, YAP1 is implicated in strengthening the interaction between RELA and DPF3, a component of SWI/SNF chromatin remodeling complex, in response to heat shock. Thus, YAP1 plays a role as a thermosensor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Genes src/fisiologia , Resposta ao Choque Térmico/fisiologia , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP90/fisiologia , Células HeLa , Resposta ao Choque Térmico/genética , Humanos , NF-kappa B/metabolismo , Fosforilação , Ligação Proteica , Transporte Proteico/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/metabolismo , Células Tumorais Cultivadas , Proteínas de Sinalização YAP
8.
J Biol Chem ; 295(32): 11214-11230, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32554467

RESUMO

The gene encoding the proto-oncogene GTPase RAS is frequently mutated in human cancers. Mutated RAS proteins trigger antiapoptotic and cell-proliferative signals and lead to oncogenesis. However, RAS also induces apoptosis and senescence, which may contribute to the eradication of cells with RAS mutations. We previously reported that Ras association domain family member 6 (RASSF6) binds MDM2 and stabilizes the tumor suppressor p53 and that the active form of KRAS promotes the interaction between RASSF6 and MDM2. We also reported that Unc-119 lipid-binding chaperone (UNC119A), a chaperone of myristoylated proteins, interacts with RASSF6 and regulates RASSF6-mediated apoptosis. In this study, using several human cancer cell lines, quantitative RT-PCR, RNAi-based gene silencing, and immunoprecipitation/-fluorescence and cell biology assays, we report that UNC119A interacts with the active form of KRAS and that the C-terminal modification of KRAS is required for this interaction. We also noted that the hydrophobic pocket of UNC119A, which binds the myristoylated peptides, is not involved in the interaction. We observed that UNC119A promotes the binding of KRAS to RASSF6, enhances the interaction between RASSF6 and MDM2, and induces apoptosis. Conversely, UNC119A silencing promoted soft-agar colony formation, migration, and invasiveness in KRAS-mutated cancer cells. We conclude that UNC119A promotes KRAS-mediated p53-dependent apoptosis via RASSF6 and may play a tumor-suppressive role in cells with KRAS mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas ras/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Proto-Oncogene Mas
9.
Biochem Biophys Res Commun ; 523(4): 853-858, 2020 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-31954516

RESUMO

Mechanical stimulation is well known to be important for maintaining tissue and organ homeostasis. Here, we found that hydrostatic pressure induced nuclear translocation of a forkhead box O (FOXO) transcription factor DAF-16, in C. elegans within minutes, whereas the removal of this pressure resulted in immediate export of DAF-16 to the cytoplasm. We also monitored DAF-16-dependent transcriptional changes by exposure to 1 MPa pressure for 5 min, and found significant changes in collagen and other genes in a DAF-16 dependent manner. Lifespan was markedly prolonged with exposure to cyclic pressure treatment (1 MPa once a day for 5 min from L1 larvae until death). Furthermore, age-dependent decline in locomotor activity was suppressed by the treatment. In contrast, the nuclear translocation of the yes-associated protein YAP-1 was not induced under the same pressure conditions. Thus, moderate hydrostatic pressure improves ageing progression through activation of DAF-16/FOXO in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Pressão Hidrostática , Proteínas Adaptadoras de Transdução de Sinal , Animais , Caenorhabditis elegans/genética , Regulação da Expressão Gênica , Larva/metabolismo , Longevidade , Atividade Motora , Transporte Proteico , Transcrição Gênica , Proteínas de Sinalização YAP
10.
J Chem Inf Model ; 60(10): 4867-4880, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32910853

RESUMO

Enhanced conformational sampling, a genetic-algorithm-guided multidimensional virtual-system coupled molecular dynamics, can provide equilibrated conformational distributions of a receptor protein and a flexible ligand at room temperature. The distributions provide not only the most stable but also semistable complex structures and propose a ligand-receptor binding process. This method was applied to a system consisting of a receptor protein, 14-3-3ε, and a flexible peptide, phosphorylated myeloid leukemia factor 1 (pMLF1). The results present comprehensive binding pathways of pMLF1 to 14-3-3ε. We identified four thermodynamically stable clusters of MLF1 on the 14-3-3ε surface and free-energy barriers among some clusters. The most stable cluster includes two high-density spots connected by a narrow corridor. When pMLF1 passes the corridor, a salt-bridge relay (switching) related to the phosphorylated residue of pMLF1 occurs. Conformations in one high-density spot are similar to the experimentally determined complex structure. Three-dimensional distributions of residues in the intermolecular interface rationally explain the binding constant changes resulting from the alanine mutation experiment for the residues. We also performed a simulation of nonphosphorylated peptide and 14-3-3ε, which demonstrated that the complex structure was unstable, suggesting that phosphorylation of the peptide is crucially important for binding to 14-3-3ε.


Assuntos
Proteínas 14-3-3 , Peptídeos , Proteínas 14-3-3/genética , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
11.
J Mol Cell Cardiol ; 128: 90-95, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30684499

RESUMO

BACKGROUND: Since regenerative capacity of adult mammalian myocardium is limited, activation of the endogenous proliferative capacity of existing cardiomyocytes is a potential therapeutic strategy for treating heart diseases accompanied by cardiomyocyte loss. Recently, we performed a compound screening and developed a new drug named TT-10 (C11H10FN3OS2) which promotes the proliferation of murine cardiomyocytes via enhancement of YES-associated protein (YAP)-transcriptional enhancer factor domain (TEAD) activity and improves cardiac function after myocardial infarction in adult mice. METHODS AND RESULTS: To test whether TT-10 can also promote the proliferative capacity of human cardiomyocytes, we investigated the efficacy of TT-10 on human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSCMs). The hiPSCs were established from monocytes obtained from healthy donors and cardiac differentiation was performed using a chemically defined protocol. As was observed in murine cardiomyocytes, TT-10 markedly promoted cell cycle activation and increased cell division of hiPSCMs. We then evaluated other effects of TT-10 on the functional properties of hiPSCMs by gene expression and cell motion analyses. We observed that TT-10 had no unfavorable effects on the expression of functional and structural genes or the contractile properties of hiPSCMs. CONCLUSIONS: Our results suggest that the novel drug TT-10 effectively activated the cell cycle of hiPSCMs without apparent functional impairment of myocardium, suggesting the potential of clinical usefulness of this drug.


Assuntos
Ciclo Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Regeneração/efeitos dos fármacos , Regeneração/genética
12.
Cell Mol Life Sci ; 75(10): 1773-1787, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29353317

RESUMO

Human genome has ten genes that are collectedly called Ras association domain family (RASSF). RASSF is composed of two subclasses, C-RASSF and N-RASSF. Both N-RASSF and C-RASSF encode Ras association domain-containing proteins and are frequently suppressed by DNA hypermethylation in human cancers. However, C-RASSF and N-RASSF are quite different. Six C-RASSF proteins (RASSF1-6) are characterized by a C-terminal coiled-coil motif named Salvador/RASSF/Hippo domain, while four N-RASSF proteins (RASSF7-10) lack it. C-RASSF proteins interact with mammalian Ste20-like kinases-the core kinases of the tumor suppressor Hippo pathway-and cross-talk with this pathway. Some of them share the same interacting molecules such as MDM2 and exert the tumor suppressor role in similar manners. Nevertheless, each C-RASSF protein has distinct characters. In this review, we summarize our current knowledge of how C-RASSF proteins play tumor suppressor roles and discuss the similarities and differences among C-RASSF proteins.


Assuntos
Proteínas de Transporte/fisiologia , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Proteínas de Transporte/metabolismo , Genes Supressores de Tumor , Humanos , Família Multigênica , Proteínas ras/metabolismo
13.
Cancer Sci ; 109(9): 2767-2780, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29931788

RESUMO

Ras-association domain family 6 (RASSF6) is a tumor suppressor that interacts with MDM2 and stabilizes p53. Caenorhabditis elegans unc-119 encodes a protein that is required for normal development of the nervous system. Humans have 2 unc-119 homologues, UNC119 and UNC119B. We have identified UNC119 as a RASSF6-interacting protein. UNC119 promotes the interaction between RASSF6 and MDM2 and stabilizes p53. Thus, UNC119 induces apoptosis by RASSF6 and p53. UNC119 depletion impairs DNA repair after DNA damage and results in polyploid cell generation. These findings support that UNC119 is a regulator of the RASSF6-MDM2-p53 axis and functions as a tumor suppressor.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Apoptose/fisiologia , Proteínas Reguladoras de Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Neoplasias/genética , Poliploidia , Ligação Proteica , Proteína Supressora de Tumor p53/genética
14.
Genes Cells ; 22(12): 993-1003, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29193479

RESUMO

RASSF6, a member of the tumor suppressor Ras-association domain family proteins, induces apoptosis in the caspase-dependent and caspase-independent manners. RASSF6 interacts with MDM2 and stabilizes p53. BCL-XL is a prosurvival member of BCL-2 family proteins. BCL-XL directly inhibits proapoptotic BAX and BAK. BCL-XL also traps tBID, a proapoptotic activator BH3-only protein, and sequesters p53. In addition, BCL-XL regulates the mitochondrial membrane permeability via voltage-dependent anion channel. In these manners, BCL-XL plays an antiapoptotic role. We report the interaction of BCL-XL with RASSF6. BCL-XL inhibits the interaction between RASSF6 and MDM2 and suppresses p53 expression. Consequently, BCL-XL antagonizes RASSF6-mediated apoptosis. Thus, the inhibition of RASSF6-mediated apoptosis also underlies the prosurvival role of BCL-XL.


Assuntos
Apoptose , Proteínas Monoméricas de Ligação ao GTP/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína bcl-X/metabolismo , Proteínas Reguladoras de Apoptose , Células Cultivadas , Humanos , Transdução de Sinais
15.
Analyst ; 143(14): 3472-3480, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29944152

RESUMO

Myogenesis-promoting chemicals are an important source of new pharmaceuticals for the treatment of skeletal muscle atrophy that impairs quality of life. This report presents a robust and quantitative bioluminescence-based assay for screening myogenesis-promoting compounds in chemical libraries. The assay system consists of two stable C2C12 myoblast cell lines, each of which expresses either an N-terminal or a C-terminal split luciferase fragment fused to a naturally split DnaE intein as an indicator for cell fusion. Cell fusion during myogenesis induces bioluminescence in the cytosol because of the reconstitution of luciferases. The luminescence intensity quantitatively represents the progress in the cell fusion and therefore indicates the extent of myogenesis. We applied this assay system to a high-throughput screening of myogenesis-promoting compouns in 1191 pharmacologically proven bioactive small molecules, which revealed two chemical compounds as myogenesis-promoting compounds: Imatinib and Doxazosin mesylate. The assay system enabled a robust and quantitative evaluation of the extent of myogenesis through simple luminescence measurements, and is expected to be widely applicable for high-throughput screening of cell fusion-promoting and inhibiting molecules.


Assuntos
Fusão Celular , Luciferases , Desenvolvimento Muscular , Mioblastos/citologia , Animais , Linhagem Celular , Doxazossina/farmacologia , Mesilato de Imatinib/farmacologia , Camundongos , Mioblastos/efeitos dos fármacos
17.
Cancer Sci ; 107(6): 791-802, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27009852

RESUMO

Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds.


Assuntos
Avaliação Pré-Clínica de Medicamentos/normas , Proteínas de Fluorescência Verde/metabolismo , Domínios PDZ/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Transcrição Gênica/efeitos dos fármacos , Motivos de Aminoácidos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Dobutamina/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Etanolaminas/análise , Etanolaminas/farmacologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Células HEK293 , Compostos Heterocíclicos com 3 Anéis/análise , Compostos Heterocíclicos com 3 Anéis/farmacologia , Via de Sinalização Hippo , Humanos , Monoéster Fosfórico Hidrolases/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/análise , Piridinas/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais/efeitos dos fármacos , Tioureia/análogos & derivados , Tioureia/análise , Tioureia/farmacologia , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , ortoaminobenzoatos/análise , ortoaminobenzoatos/farmacologia
18.
EMBO J ; 31(5): 1190-202, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22234186

RESUMO

Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure, Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here, we report that a transcriptional factor, RP58, negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently, Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore, Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally, we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Córtex Cerebral/embriologia , Regulação da Expressão Gênica , Proteínas Inibidoras de Diferenciação/metabolismo , Neurônios/citologia , Proteínas Repressoras/metabolismo , Animais , Córtex Cerebral/citologia , Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas Inibidoras de Diferenciação/genética , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética
19.
Exp Cell Res ; 336(2): 171-81, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116467

RESUMO

The development of the efficient screening system of detecting compounds that promote myogenesis and prevent muscle atrophy is important. Mouse C2C12 cells are widely used to evaluate myogenesis but the procedures of the assay are not simple and the quantification is not easy. We established C2C12 cells expressing the N-terminal green fluorescence protein (GFP) and the C-terminal GFP (GFP1-10 and GFP11 cells). GFP1-10 and GFP11 cells do not exhibit GFP signals until they are fused. The signal intensity correlates with the expression of myogenic markers and myofusion. Myogenesis-promoting reagents, such as insulin-like growth factor-1 (IGF1) and ß-guanidinopropionic acid (GPA), enhance the signals, whereas the poly-caspase inhibitor, z-VAD-FMK, suppresses it. GFP signals are observed when myotubes formed by GFP1-10 cells are fused with single nuclear GFP11 cells, and enhanced by IGF1, GPA, and IBS008738, a recently-reported myogenesis-promoting reagent. Fusion between myotubes formed by GFP1-10 and GFP11 cells is associated with the appearance of GFP signals. IGF1 and GPA augment these signals, whereas NSC23766, Rac inhibitor, decreases them. The conditioned medium of cancer cells suppresses GFP signals during myogenesis and reduces the width of GFP-positive myotubes after differentiation. Thus the novel split GFP-based assay will provide the useful method for the study of myogenesis, myofusion, and atrophy.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/citologia , Atrofia Muscular/prevenção & controle , Mioblastos/citologia , Clorometilcetonas de Aminoácidos/farmacologia , Aminoquinolinas/farmacologia , Animais , Inibidores de Caspase/farmacologia , Diferenciação Celular , Fusão Celular , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Guanidinas/farmacologia , Células HEK293 , Humanos , Imidazóis/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Camundongos , Propionatos/farmacologia , Pirimidinas/farmacologia , Proteínas rac de Ligação ao GTP/antagonistas & inibidores
20.
Cell Mol Life Sci ; 72(2): 285-306, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25266986

RESUMO

The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Modelos Biológicos , Neoplasias/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Citoesqueleto de Actina/metabolismo , Aciltransferases , Moléculas de Adesão Celular/metabolismo , Via de Sinalização Hippo , Humanos , Fosforilação , Ubiquitinação , Proteínas de Sinalização YAP
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa