Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genet Med ; 22(6): 1040-1050, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32103185

RESUMO

PURPOSE: The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. METHODS: We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. RESULTS: We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. CONCLUSION: Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.


Assuntos
Encefalopatias , Microcefalia , Animais , Proliferação de Células/genética , Homozigoto , Humanos , Camundongos , Microcefalia/genética , Peixe-Zebra/genética
2.
Ann Neurol ; 77(4): 720-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25599672

RESUMO

Focal malformations of cortical development, including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are important causes of intractable childhood epilepsy. Using targeted and exome sequencing on DNA from resected brain samples and nonbrain samples from 53 patients with FCD or HME, we identified pathogenic germline and mosaic mutations in multiple PI3K/AKT pathway genes in 9 patients, and a likely pathogenic variant in 1 additional patient. Our data confirm the association of DEPDC5 with sporadic FCD but also implicate this gene for the first time in HME. Our findings suggest that modulation of the mammalian target of rapamycin pathway may hold promise for malformation-associated epilepsy.


Assuntos
Hemimegalencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Estudos de Coortes , Proteínas Ativadoras de GTPase , Hemimegalencefalia/diagnóstico , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
3.
BMC Biol ; 13: 44, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26108483

RESUMO

BACKGROUND: In many insect species, fitness trade-offs exist between maximizing body size and developmental speed. Understanding how various species evolve different life history strategies requires knowledge of the physiological mechanisms underlying the regulation of body size and developmental timing. Here the roles of juvenile hormone (JH) and insulin/target of rapamycin (TOR) signaling in the regulation of the final body size were examined in the tobacco hornworm, Manduca sexta. RESULTS: Feeding rapamycin to wild-type larvae decreased the growth rate but did not alter the peak size of the larvae. In contrast, feeding rapamycin to the JH-deficient black mutant larvae caused the larvae to significantly increase the peak size relative to the DMSO-fed control animals by lengthening the terminal growth period. Furthermore, the critical weight was unaltered by feeding rapamycin, indicating that in Manduca, the critical weight is not influenced by insulin/TOR signaling. In addition, post-critical weight starved black mutant Manduca given rapamycin underwent metamorphosis sooner than those that were fed, mimicking the "bail-out mechanism". CONCLUSIONS: Our study demonstrates that JH masks the effects of insulin/TOR signaling in the determination of the final body size and that the critical weights in Drosophila and Manduca rely on distinct mechanisms that reflect different life history strategies. Our study also suggests that TOR signaling lengthens the terminal growth period in Manduca as it does in Drosophila, and that JH levels determine the relative contributions of nutrient- and body size-sensing pathways to metamorphic timing.


Assuntos
Insulina/metabolismo , Hormônios Juvenis/metabolismo , Manduca/crescimento & desenvolvimento , Serina-Treonina Quinases TOR/metabolismo , Animais , Tamanho Corporal , Manduca/metabolismo , Transdução de Sinais
4.
Science ; 359(6375): 555-559, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217584

RESUMO

It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.


Assuntos
Envelhecimento/genética , Reparo do DNA/genética , Taxa de Mutação , Doenças Neurodegenerativas/genética , Neurogênese/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Síndrome de Cockayne/genética , Análise Mutacional de DNA , Feminino , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Neurônios , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/embriologia , Análise de Célula Única , Sequenciamento Completo do Genoma , Xeroderma Pigmentoso/genética , Adulto Jovem
5.
Cell Rep ; 21(13): 3754-3766, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281825

RESUMO

Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are epileptogenic neurodevelopmental malformations caused by mutations in mTOR pathway genes. Deep sequencing of these genes in FCD/HME brain tissue identified an etiology in 27 of 66 cases (41%). Radiographically indistinguishable lesions are caused by somatic activating mutations in AKT3, MTOR, and PIK3CA and germline loss-of-function mutations in DEPDC5, NPRL2, and TSC1/2, including TSC2 mutations in isolated HME demonstrating a "two-hit" model. Mutations in the same gene cause a disease continuum from FCD to HME to bilateral brain overgrowth, reflecting the progenitor cell and developmental time when the mutation occurred. Single-cell sequencing demonstrated mTOR activation in neurons in all lesions. Conditional Pik3ca activation in the mouse cortex showed that mTOR activation in excitatory neurons and glia, but not interneurons, is sufficient for abnormal cortical overgrowth. These data suggest that mTOR activation in dorsal telencephalic progenitors, in some cases specifically the excitatory neuron lineage, causes cortical dysplasia.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Transdução de Sinais , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Telencéfalo/patologia , Animais , Linhagem da Célula , Classe I de Fosfatidilinositol 3-Quinases/genética , Hemimegalencefalia/genética , Hemimegalencefalia/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa