Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 116(36): 17990-18000, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31439820

RESUMO

Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Melanoma/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Proteínas de Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos , Células HEK293 , Humanos , Células MCF-7 , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Breast Cancer Res ; 22(1): 87, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32787886

RESUMO

BACKGROUND: Resistance to endocrine therapy is a major clinical challenge in the management of oestrogen receptor (ER)-positive breast cancer. In this setting, p53 is frequently wildtype and its activity may be suppressed via upregulation of its key regulator MDM2. This underlies our rationale to evaluate MDM2 inhibition as a therapeutic strategy in treatment-resistant ER-positive breast cancer. METHODS: We used the MDM2 inhibitor NVP-CGM097 to treat in vitro and in vivo models alone and in combination with fulvestrant or palbociclib. We perform cell viability, cell cycle, apoptosis and senescence assays to evaluate anti-tumour effects in p53 wildtype and p53 mutant ER-positive cell lines (MCF-7, ZR75-1, T-47D) and MCF-7 lines resistant to endocrine therapy and to CDK4/6 inhibition. We further assess the drug effects in patient-derived xenograft (PDX) models of endocrine-sensitive and endocrine-resistant ER-positive breast cancer. RESULTS: We demonstrate that MDM2 inhibition results in cell cycle arrest and increased apoptosis in p53-wildtype in vitro and in vivo breast cancer models, leading to potent anti-tumour activity. We find that endocrine therapy or CDK4/6 inhibition synergises with MDM2 inhibition but does not further enhance apoptosis. Instead, combination treatments result in profound regulation of cell cycle-related transcriptional programmes, with synergy achieved through increased antagonism of cell cycle progression. Combination therapy pushes cell lines resistant to fulvestrant or palbociclib to become senescent and significantly reduces tumour growth in a fulvestrant-resistant patient-derived xenograft model. CONCLUSIONS: We conclude that MDM2 inhibitors in combination with ER degraders or CDK4/6 inhibitors represent a rational strategy for treating advanced, endocrine-resistant ER-positive breast cancer, operating through synergistic activation of cell cycle co-regulatory programmes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Resistencia a Medicamentos Antineoplásicos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Receptores de Estrogênio/metabolismo , Animais , Apoptose , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Fulvestranto/administração & dosagem , Humanos , Isoquinolinas/administração & dosagem , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Piperazinas/administração & dosagem , Piridinas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Mol Cell Proteomics ; 17(6): 1170-1183, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463595

RESUMO

Prostate cancer is a common cause of cancer-related death in men. E6AP (E6-Associated Protein), an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells in vitro and in vivo However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumor suppressor targets of E6AP, promyelocytic leukemia protein and p27. To explore additional players that are regulated downstream of E6AP, we combined a transcriptomic and proteomic approach. We identified and quantified 16,130 transcripts and 7,209 proteins in castration resistant prostate cancer cell line, DU145. A total of 2,763 transcripts and 308 proteins were significantly altered on knockdown of E6AP. Pathway analyses supported the known phenotypic effects of E6AP knockdown in prostate cancer cells and in parallel exposed novel potential links of E6AP with cancer metabolism, DNA damage repair and immune response. Changes in expression of the top candidates were confirmed using real-time polymerase chain reaction. Of these, clusterin, a stress-induced chaperone protein, commonly deregulated in prostate cancer, was pursued further. Knockdown of E6AP resulted in increased clusterin transcript and protein levels in vitro and in vivo Concomitant knockdown of E6AP and clusterin supported the contribution of clusterin to the phenotype induced by E6AP. Overall, results from this study provide insight into the potential biological pathways controlled by E6AP in prostate cancer cells and identifies clusterin as a novel target of E6AP.


Assuntos
Clusterina/genética , Proteínas de Neoplasias/genética , Neoplasias da Próstata/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular , Clusterina/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Neoplasias da Próstata/genética , Proteômica , Transcriptoma
4.
BMC Urol ; 20(1): 171, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33115461

RESUMO

BACKGROUND: Understanding the drivers of recurrence in aggressive prostate cancer requires detailed molecular and genomic understanding in order to aid therapeutic interventions. We provide here a case report of histological, transcriptional, proteomic, immunological, and genomic features in a longitudinal study of multiple biopsies from diagnosis, through treatment, and subsequent recurrence. CASE PRESENTATION: Here we present a case study of a male in 70 s with high-grade clinically-localised acinar adenocarcinoma treated with definitive hormone therapy and radiotherapy. The patient progressed rapidly with rising PSA and succumbed without metastasis 52 months after diagnosis. We identified the expression of canonical histological markers of neuroendocrine PC (NEPC) including synaptophysin, neuron-specific enolase and thyroid transcription factor 1, as well as intact AR expression, in the recurrent disease only. The resistant disease was also marked by an extremely low immune infiltrate, extensive genomic chromosomal aberrations, and overactivity in molecular hallmarks of NEPC disease including Aurora kinase and E2F, as well as novel alterations in the cMYB pathway. We also observed that responses to both primary treatments (high dose-rate brachytherapy and androgen deprivation therapies) were consistent with known optimal responses-ruling out treatment inefficacy as a factor in relapse. CONCLUSIONS: These data provide novel insights into a case of locally recurrent aggressive prostate cancer harbouring NEPC pathology, in the absence of detected metastasis.


Assuntos
Neoplasias da Próstata/genética , Idoso , Resistencia a Medicamentos Antineoplásicos , Humanos , Estudos Longitudinais , Masculino , Tumores Neuroendócrinos/genética , Fenótipo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Transcriptoma
5.
Int J Mol Sci ; 21(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414156

RESUMO

Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.


Assuntos
Imunidade Adaptativa/genética , Imunidade Inata/genética , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Mutação/genética , Neoplasias/imunologia , Neoplasias/patologia , Proteína Supressora de Tumor p53/imunologia
6.
Hum Mutat ; 40(6): 788-800, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30840781

RESUMO

Germline pathogenic variants in the TP53 gene cause Li-Fraumeni syndrome, a condition that predisposes individuals to a wide range of cancer types. Identification of individuals carrying a TP53 pathogenic variant is linked to clinical management decisions, such as the avoidance of radiotherapy and use of high-intensity screening programs. The aim of this study was to develop an evidence-based quantitative model that integrates independent in silico data (Align-GVGD and BayesDel) and somatic to germline ratio (SGR), to assign pathogenicity to every possible missense variant in the TP53 gene. To do this, a likelihood ratio for pathogenicity (LR) was derived from each component calibrated using reference sets of assumed pathogenic and benign missense variants. A posterior probability of pathogenicity was generated by combining LRs, and algorithm outputs were validated using different approaches. A total of 730 TP53 missense variants could be assigned to a clinically interpretable class. The outputs of the model correlated well with existing clinical information, functional data, and ClinVar classifications. In conclusion, these quantitative outputs provide the basis for individualized assessment of cancer risk useful for clinical interpretation. In addition, we propose the value of the novel SGR approach for use within the ACMG/AMP guidelines for variant classification.


Assuntos
Biologia Computacional/métodos , Síndrome de Li-Fraumeni/genética , Mutação de Sentido Incorreto , Proteína Supressora de Tumor p53/genética , Algoritmos , Simulação por Computador , Predisposição Genética para Doença , Humanos , Modelos Genéticos
7.
Carcinogenesis ; 40(6): 707-714, 2019 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-31087000

RESUMO

Since its discovery, the E3 ubiquitin ligase E6-associated protein (E6AP) has been studied extensively in two pathological contexts: infection by the human papillomavirus (HPV), and the neurodevelopmental disorder, Angelman syndrome. Vital biological links between E6AP and other viruses, namely hepatitis C virus and encephalomyocarditis virus, have been recently uncovered. Critically, oncogenic E6AP activities have been demonstrated to contribute to cancers of both viral and non-viral origins. HPV-associated cancers serve as the primary example of E6AP involvement in cancers driven by viruses. Studies over the past few years have exposed a role for E6AP in non-viral-related cancers. This has been demonstrated in B-cell lymphoma and prostate cancers, where oncogenic E6AP functions drive these cancers by acting on key tumour suppressors. In this review we discuss the role of E6AP in viral infection, viral propagation and viral-related cancer. We discuss processes affected by oncogenic E6AP, which promote cancers of viral and non-viral aetiology. Overall, recent findings support the role of oncogenic E6AP in disrupting key cellular processes, including tumour suppression and the immune response. E6AP is consequently emerging as an attractive therapeutic target for a number of specific cancers.


Assuntos
Neoplasias/fisiopatologia , Neoplasias/virologia , Infecções por Papillomavirus/fisiopatologia , Ubiquitina-Proteína Ligases/fisiologia , Carcinogênese , Vírus da Encefalomiocardite/patogenicidade , Hepacivirus/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Papillomaviridae/patogenicidade
8.
Int J Cancer ; 144(5): 1151-1159, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30288742

RESUMO

A plethora of individual candidate biomarkers for predicting biochemical relapse in localized prostate cancer (PCa) have been proposed. Combined biomarkers may improve prognostication, and ensuring validation against more clinically relevant endpoints are required. The Australian PCa Research Centre NSW has contributed to numerous studies of molecular biomarkers associated with biochemical relapse. In the current study, these biomarkers were re-analyzed for biochemical relapse, metastatic relapse and PCa death with extended follow-up. Biomarkers of significance were then used to develop a combined prognostic model for clinical outcomes and validated in a large independent cohort. The discovery cohort (n = 324) was based on 12 biomarkers with a median follow-up of 16 years. Seven biomarkers were significantly associated with biochemical relapse. Three biomarkers were associated with metastases: AZGP1, Ki67 and PML. Only AZGP1 was associated with PCa death. In their individual and combinational forms, AZGP1 and Ki67 as a dual BM signature was the most robust predictor of metastatic relapse (AUC 0.762). The AZPG1 and Ki67 signature was validated in an independent cohort of 347 PCa patients. The dual BM signature of AZGP1 and Ki67 predicted metastasis in the univariable (HR 7.2, 95% CI, 1.6-32; p = 0.01) and multivariable analysis (HR 5.4, 95% CI, 1.2-25; p = 0.03). The dual biomarker signature marginally improved risk prediction compared to AZGP1 alone (AUC 0.758 versus 0.738, p < 0.001). Our findings indicate that biochemical relapse is not an adequate surrogate for metastasis or PCa death. The dual biomarker signature of AZGP1 and Ki67 offers a small benefit in predicting metastasis over AZGP1 alone.


Assuntos
Biomarcadores Tumorais/metabolismo , Metástase Neoplásica/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Austrália , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Prognóstico , Próstata/metabolismo , Próstata/patologia , Prostatectomia/métodos , Neoplasias da Próstata/cirurgia
9.
Prostate ; 78(8): 563-575, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29520850

RESUMO

INTRODUCTION: The development of radioresistance in prostate cancer (PCa) is an important clinical issue and is still largely uninformed by personalized molecular characteristics. The aim of this study was to establish a platform that describes the early oncoproteomic response of human prostate tissue to radiation therapy (RT) using a prospective human tissue cohort. METHODS: Fresh and fixed transperineal biopsies from eight men with clinically localized tumors were taken prior to and 14 days following a single fraction of high-dose-rate brachytherapy. Quantitative protein analysis was achieved using an optimized protein extraction pipeline and subsequent data-independent acquisition mass spectroscopy (DIA-MS). Ontology analyses were used to identify enriched functional pathways, with the candidates further interrogated in formalin-fixed paraffin-embedded tissue biopsies from five additional patients. RESULTS: We obtained a mean coverage of 5660 proteins from fresh tissue biopsies; with the principal post-radiation change observed being an increase in levels amongst a total of 49 proteins exhibiting abundance changes. Many of these changes in abundance varied between patients and, typically to prostate cancer tissue, exhibited a high level of heterogeneity. Ontological analysis revealed the enrichment of the protein activation cascades of three immunological pathways: humoral immune response, leukocyte mediated immunity and complement activation. These were predominantly associated with the extracellular space. We validated significant expression differences in between 20% and 61% of these candidates using the separate fixed-tissue cohort and established their feasibility as an experimental tissue resource by acquiring quantitative data for a mean of 5152 proteins per patient. DISCUSSION: In this prospective study, we have established a sensitive and reliable oncoproteomic pipeline for the analysis of both fresh and formalin-fixed human PCa tissue. We identified multiple pathways known to be radiation-responsive and have established a powerful database of candidates and pathways with no current association with RT. This information may be beneficial in the advancement of personalized therapies and potentially, predictive biomarkers.


Assuntos
Braquiterapia , Espectrometria de Massas/métodos , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/radioterapia , Tolerância a Radiação/efeitos da radiação , Biópsia , Humanos , Masculino , Estudos Prospectivos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteômica , Tolerância a Radiação/fisiologia
10.
J Pathol ; 241(5): 661-670, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28097652

RESUMO

Mutation of the key tumour suppressor p53 defines a transition in the progression towards aggressive and metastatic breast cancer (BC) with the poorest outcome. Specifically, the p53 mutation frequency exceeds 50% in triple-negative BC. Key regulators of mutant p53 that facilitate its oncogenic functions are potential therapeutic targets. We report here that the MDM4 protein is frequently abundant in the context of mutant p53 in basal-like BC samples. Importantly, we show that MDM4 plays a critical role in the proliferation of these BC cells. We demonstrate that conditional knockdown (KD) of MDM4 provokes growth inhibition across a range of BC subtypes with mutant p53, including luminal, Her2+ and triple-negative BCs. In vivo, MDM4 was shown to be crucial for the establishment and progression of tumours. This growth inhibition was mediated, at least in part, by the cell cycle inhibitor p27. Depletion of p27 together with MDM4 KD led to recovery of the proliferative capacity of cells that were growth-inhibited by MDM4 KD alone. Consistently, we identified low levels of p27 expression in basal-like tumours corresponding to high levels of MDM4 and p53. This predicts a signature for a subset of tumours that may be amenable to therapies targeted towards MDM4 and mutant p53. The therapeutic potential of MDM4 as a target in BC with mutant p53 was shown in vitro by use of a small-molecule inhibitor. Overall, our study supports MDM4 as a novel therapeutic target for BC expressing mutant p53. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Proteína Supressora de Tumor p53/genética , Antracenos/farmacologia , Carcinogênese/genética , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Feminino , Técnicas de Silenciamento de Genes , Humanos , Mutação , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Tioureia/análogos & derivados , Tioureia/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/metabolismo
11.
Radiat Environ Biophys ; 57(3): 241-249, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29850926

RESUMO

Transcriptional dosimetry is an emergent field of radiobiology aimed at developing robust methods for detecting and quantifying absorbed doses using radiation-induced fluctuations in gene expression. A combination of RNA sequencing, array-based and quantitative PCR transcriptomics in cellular, murine and various ex vivo human models has led to a comprehensive description of a fundamental set of genes with demonstrable dosimetric qualities. However, these are yet to be validated in human tissue due to the scarcity of in situ-irradiated source material. This represents a major hurdle to the continued development of transcriptional dosimetry. In this study, we present a novel evaluation of a previously reported set of dosimetric genes in human tissue exposed to a large therapeutic dose of radiation. To do this, we evaluated the quantitative changes of a set of dosimetric transcripts consisting of FDXR, BAX, BCL2, CDKN1A, DDB2, BBC3, GADD45A, GDF15, MDM2, SERPINE1, TNFRSF10B, PLK3, SESN2 and VWCE in guided pre- and post-radiation (2 weeks) prostate cancer biopsies from seven patients. We confirmed the prolonged dose-responsivity of most of these transcripts in in situ-irradiated tissue. BCL2, GDF15, and to some extent TNFRSF10B, were markedly unreliable single markers of radiation exposure. Nevertheless, as a full set, these genes reliably segregated non-irradiated and irradiated tissues and predicted radiation absorption on a patient-specific basis. We also confirmed changes in the translated protein product for a small subset of these dosimeters. This study provides the first confirmatory evidence of an existing dosimetric gene set in less-accessible tissues-ensuring peripheral responses reflect tissue-specific effects. Further work will be required to determine if these changes are conserved in different tissue types, post-radiation times and doses.


Assuntos
Proteômica , Transcrição Gênica/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Radioisótopos de Irídio/uso terapêutico , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/radioterapia , Radiometria
12.
J Gen Virol ; 97(12): 3313-3330, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902311

RESUMO

Recently, we showed that the ubiquitin ligase E6AP stabilizes ß-catenin and activates its transcriptional activity. These activities were enhanced by the human papillomavirus (HPV) E6 protein. In the present study, we explored the function of E6AP, which increases ß-catenin stabilization and transcriptional activation. Here, we report that E6AP interacts with ß-catenin and mediates its nonproteolytic ubiquitylation, as evidenced in transiently transfected cell-based and in vitro reconstitution ubiquitylation assays. Overexpression of E6AP increased ß-catenin polyubiquitylation and, consistent with that, knockdown or knock-out of E6AP expression reduced ß-catenin polyubiquitylation. The ubiquitylation of ß-catenin by E6AP was dependent on its E3 ubiquitin ligase activity, but it was proteasome-independent and did not require HPV-E6, phosphorylation of ß-catenin by glycogen synthase kinase 3ß (GSK3ß) or activity of the ß-catenin 'destruction complex'. We also show that transcriptional activation of ß-catenin by E6AP is coupled with ß-catenin protein stabilization, but not its ubiquitylation. In contrast to ß-catenin ubiquitylation, ß-catenin protein stability and its transcriptional activity were absolutely dependent on the activity of the destruction complex and phosphorylation by GSK3ß. Collectively, our data uncover a dual role for E6AP in the regulation of ß-catenin ubiquitylation, stability and transcriptional activity, with HPV-E6 enhancing only part of E6AP activities.


Assuntos
Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/genética , Humanos , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/enzimologia , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteínas Repressoras/genética , Transdução de Sinais , Ativação Transcricional , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , beta Catenina/genética
13.
Gut ; 64(10): 1506-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26187504

RESUMO

OBJECTIVES: p53 is a critical tumour suppressor and is mutated in 70% of oesophageal adenocarcinomas (OACs), resulting in chemoresistance and poor survival. APR-246 is a first-in-class reactivator of mutant p53 and is currently in clinical trials. In this study, we characterised the activity of APR-246 and its effect on p53 signalling in a large panel of cell line xenograft (CLX) and patient-derived xenograft (PDX) models of OAC. DESIGN: In vitro response to APR-246 was assessed using clonogenic survival, cell cycle and apoptosis assays. Ectopic expression, gene knockdown and CRISPR/Cas9-mediated knockout studies of mutant p53 were performed to investigate p53-dependent drug effects. p53 signalling was examined using quantitative RT-PCR and western blot. Synergistic interactions between APR-246 and conventional chemotherapies were evaluated in vitro and in vivo using CLX and PDX models. RESULTS: APR-246 upregulated p53 target genes, inhibited clonogenic survival and induced cell cycle arrest as well as apoptosis in OAC cells harbouring p53 mutations. Sensitivity to APR-246 correlated with cellular levels of mutant p53 protein. Ectopic expression of mutant p53 sensitised p53-null cells to APR-246, while p53 gene knockdown and knockout diminished drug activity. Importantly, APR-246 synergistically enhanced the inhibitory effects of cisplatin and 5-fluorouracil through p53 accumulation. Finally, APR-246 demonstrated potent antitumour activity in CLX and PDX models, and restored chemosensitivity to a cisplatin/5-fluorouracil-resistant xenograft model. CONCLUSIONS: APR-246 has significant antitumour activity in OAC. Given that APR-246 is safe at therapeutic levels our study strongly suggests that APR-246 can be translated into improving the clinical outcomes for OAC patients.


Assuntos
Adenocarcinoma/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Esofágicas/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Experimentais , Quinuclidinas/uso terapêutico , RNA Neoplásico/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo
14.
Subcell Biochem ; 85: 161-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25201194

RESUMO

The presence of a functional p53 protein is a key factor for the proper suppression of cancer development. A loss of p53 activity, by mutations or inhibition, is often associated with human malignancies. The p53 protein integrates various stress signals into a growth restrictive cellular response. In this way, p53 eliminates cells with a potential to become cancerous. Being a powerful decision maker, it is imperative that p53 will be activated properly, efficiently and temporarily in response to stress. Equally important is that p53 activation will be extinguished upon recovery from stress, and that improper activation of p53 will be avoided. Failure to achieve these aims is likely to have catastrophic consequences for the organism. The machinery that governs this tight regulation is largely based on the major inhibitor of p53, Mdm2, which both blocks p53 activities and promotes its destabilization. The interplay between p53 and Mdm2 involves a complex network of positive and negative feedback loops. Relief from Mdm2 suppression is required for p53 to be stabilized and activated in response to stress. Protection from Mdm2 entails a concerted action of modifying enzymes and partner proteins. The association of p53 with the PML-nuclear bodies may provide an infrastructure in which this complex regulatory network can be orchestrated. In this chapter we use examples to illustrate the regulatory machinery that drives this network.


Assuntos
Genes p53 , Proteínas Proto-Oncogênicas c-mdm2/genética , Estresse Fisiológico , Humanos , Proteólise , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ubiquitinação
15.
Blood ; 120(4): 822-32, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689861

RESUMO

Neoplastic transformation requires the elimination of key tumor suppressors, which may result from E3 ligase-mediated proteasomal degradation. We previously demonstrated a key role for the E3 ubiquitin ligase E6AP in the regulation of promyelocytic leukemia protein (PML) stability and formation of PML nuclear bodies. Here, we report the involvement of the E6AP-PML axis in B-cell lymphoma development. A partial loss of E6AP attenuated Myc-induced B-cell lymphomagenesis. This tumor suppressive action was achieved by the induction of cellular senescence. B-cell lymphomas deficient for E6AP expressed elevated levels of PML and PML-nuclear bodies with a concomitant increase in markers of cellular senescence, including p21, H3K9me3, and p16. Consistently, PML deficiency accelerated the rate of Myc-induced B-cell lymphomagenesis. Importantly, E6AP expression was elevated in ∼ 60% of human Burkitt lymphomas, and down-regulation of E6AP in B-lymphoma cells restored PML expression with a concurrent induction of cellular senescence in these cells. Our findings demonstrate that E6AP-mediated down-regulation of PML-induced senescence is essential for B-cell lymphoma progression. This provides a molecular explanation for the down-regulation of PML observed in non-Hodgkin lymphomas, thereby suggesting a novel therapeutic approach for restoration of tumor suppression in B-cell lymphoma.


Assuntos
Linfoma de Burkitt/patologia , Senescência Celular , Linfoma Difuso de Grandes Células B/patologia , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas c-myc/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose , Linfoma de Burkitt/metabolismo , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína da Leucemia Promielocítica , Complexo de Endopeptidases do Proteassoma , Ubiquitina/metabolismo
16.
Biochemistry ; 52(18): 3119-29, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23581475

RESUMO

In human papillomavirus (HPV)-infected cells, the p53 tumor suppressor is tightly regulated by the HPV-E6-E6AP complex, which promotes it for proteasomal degradation. We previously demonstrated that c-Abl tyrosine kinase protects p53 from HPV-E6-E6AP complex-mediated ubiquitination and degradation under stress conditions. However, the underlying mechanism was not defined. In this study, we explored the possibility that c-Abl targets E6AP and thereby protects p53. We demonstrated that c-Abl interacts with and phosphorylates E6AP. We determined that the E3 ligase activity of E6AP is impaired in response to phosphorylation by c-Abl. We mapped the phosphorylation site to tyrosine 636 within the HECT catalytic domain of E6AP, and using substitution mutants, we showed that this residue dictates the E3 ligase activity of E6AP, in a substrate-specific manner. On the basis of the crystal structure of the HECT domain of E6AP, we propose a model in which tyrosine 636 plays a regulatory role in the oligomerization of E6AP, which is a process implicated in its E3 ubiquitin ligase activity. Our results suggest that c-Abl protects p53 from HPV-E6-E6AP complex-mediated degradation by phosphorylating E6AP and impairing its E3 ligase activity, thus providing a molecular explanation for the stress-induced protection of p53 in HPV-infected cells.


Assuntos
Proteínas Proto-Oncogênicas c-abl/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Domínio Catalítico , Linhagem Celular , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Homologia de Sequência de Aminoácidos , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
17.
Cells ; 12(18)2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37759468

RESUMO

Ubiquitous to normal female human somatic cells, X-chromosome inactivation (XCI) tightly regulates the transcriptional silencing of a single X chromosome from each pair. Some genes escape XCI, including crucial tumour suppressors. Cancer susceptibility can be influenced by the variability in the genes that escape XCI. The mechanisms of XCI dysregulation remain poorly understood in complex diseases, including cancer. Using publicly available breast cancer next-generation sequencing data, we show that the status of the major tumour suppressor TP53 from Chromosome 17 is highly associated with the genomic integrity of the inactive X (Xi) and the active X (Xa) chromosomes. Our quantification of XCI and XCI escape demonstrates that aberrant XCI is linked to poor survival. We derived prognostic gene expression signatures associated with either large deletions of Xi; large amplifications of Xa; or abnormal X-methylation. Our findings expose a novel insight into female cancer risks, beyond those associated with the standard molecular subtypes.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Aberrações Cromossômicas , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Processamento de Proteína Pós-Traducional , Proteína Supressora de Tumor p53/genética
18.
J Cell Sci ; 123(Pt 14): 2423-33, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20571051

RESUMO

Tight control of p63 protein levels must be achieved under differentiation or apoptotic conditions. Here, we describe a new regulatory pathway for the DeltaNp63alpha protein. We found that MDM2 binds DeltaNp63alpha in the nucleus promoting its translocation to the cytoplasm. The MDM2 nuclear localization signal is required for DeltaNp63alpha nuclear export and subsequent degradation, whereas the MDM2 ring-finger domain is dispensable. Once exported to the cytoplasm by MDM2, p63 is targeted for degradation by the Fbw7 E3-ubiquitin ligase. Efficient degradation of DeltaNp63alpha by Fbw7 (also known as FBXW7) requires GSK3 kinase activity. By deletion and point mutations analysis we have identified a phosphodegron located in the alpha and beta tail of p63 that is required for degradation. Furthermore, we show that MDM2 or Fbw7 depletion inhibits degradation of endogenous DeltaNp63alpha in cells exposed to UV irradiation, adriamycin and upon keratinocyte differentiation. Our findings suggest that following DNA damage and cellular differentiation MDM2 and Fbw7 can cooperate to regulate the levels of the pro-proliferative DeltaNp63alpha protein.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas F-Box/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transativadores/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/efeitos da radiação , Animais , Proteínas de Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos da radiação , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Dano ao DNA/genética , Doxorrubicina/farmacologia , Proteínas F-Box/genética , Proteína 7 com Repetições F-Box-WD , Humanos , Camundongos , Mutação/genética , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , RNA Interferente Pequeno/genética , Transativadores/genética , Fatores de Transcrição , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética , Ubiquitina-Proteína Ligases/genética , Raios Ultravioleta/efeitos adversos
19.
Biochem J ; 436(2): 481-91, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21426304

RESUMO

Clioquinol (5-chloro-7-iodo-8-quinolinol) is a copper ionophore that was used primarily during the 1950-1970s as an oral antimicrobial agent. It has been established that clioquinol displays toxicity towards malignant cells, inducing caspase-dependent apoptosis. In the present study we therefore investigated the effect of clioquinol on the XIAP [X-linked IAP (inhibitor of apoptosis protein)], as one of its primary functions is to hinder caspase activity and suppress apoptotic cell death. Clioquinol treatment caused cytoplasmic XIAP to rapidly relocate to the nucleus in multiple human transformed (hyperplasic and carcinoma) prostate lines. Clioquinol also caused the cytoplasmic clearance of other IAP family members (cIAP1 and cIAP2). Copper, and no other relevant bivalent metal (e.g. zinc or iron), was exclusively required for clioquinol to elicit an effect on XIAP. We further demonstrated that clioquinol selectively targets and rapidly destroys transformed prostate lines without harming primary prostate epithelial cells. The toxicity of clioquinol was copper-dependent, positively correlated with the level of extracellular copper and could be abrogated by using the copper chelator TTM (tetrathiomolybdate). Clioquinol forced the profound accumulation of intracellular copper with ensuing toxicity influenced by key regulators of cellular copper homoeostasis. Taken together, our results provide significant insight into clioquinol toxicity and reveal an exciting therapeutic approach for the treatment of prostate cancer.


Assuntos
Antineoplásicos/farmacologia , Clioquinol/farmacologia , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Clioquinol/uso terapêutico , Humanos , Masculino , Próstata/citologia , Próstata/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia
20.
Cell Death Dis ; 13(9): 777, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075907

RESUMO

Understanding prostate cancer onset and progression in order to rationally treat this disease has been critically limited by a dire lack of relevant pre-clinical animal models. We have generated a set of genetically engineered mice that mimic human prostate cancer, initiated from the gland epithelia. We chose driver gene mutations that are specifically relevant to cancers of young men, where aggressive disease poses accentuated survival risks. An outstanding advantage of our models are their intact repertoires of immune cells. These mice provide invaluable insight into the importance of immune responses in prostate cancer and offer scope for studying treatments, including immunotherapies. Our prostate cancer models strongly support the role of tumour suppressor p53 in functioning to critically restrain the emergence of cancer pathways that drive cell cycle progression; alter metabolism and vasculature to fuel tumour growth; and mediate epithelial to mesenchymal-transition, as vital to invasion. Importantly, we also discovered that the type of p53 alteration dictates the specific immune cell profiles most significantly disrupted, in a temporal manner, with ramifications for disease progression. These new orthotopic mouse models demonstrate that each of the isogenic hotspot p53 amino acid mutations studied (R172H and R245W, the mouse equivalents of human R175H and R248W respectively), drive unique cellular changes affecting pathways of proliferation and immunity. Our findings support the hypothesis that individual p53 mutations confer their own particular oncogenic gain of function in prostate cancer.


Assuntos
Neoplasias da Próstata , Proteína Supressora de Tumor p53 , Animais , Carcinogênese/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa