Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(4): e202301304, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37926683

RESUMO

The widespread and indiscriminate use of broad-spectrum antibiotics leads to microbial resistance, which causes major problems in the treatment of infectious diseases. However, advances in nanotechnology using mushrooms have opened up new domains for the synthesis and use of nanoparticles against multidrug-resistant pathogens. Mushooms have recently attracted attention and are exploited for food and medicinal purposes. The current study focuses on the molecular identification, characterization of biologically synthesized silver nanoparticles by X-ray diffraction (XRD) spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), UV-Vis spectroscopy and scanning electron microscopy (SEM) and antibacterial analysis of extract and silver nanoparticles (AgNPs) synthesis from Ganoderma resinaceum against multidrug resistant microbes. Accurate identification of mushrooms is key in utilizing them for the benefit of humans. However, morphological identification of mushrooms is time consuming, tedious and may be prone to error. Molecular techniques are quick and reliable tools that are useful in mushroom taxonomy. Blast results showed that G. resinaceum (GU451247) obtained from Pakistan was 97 % same to the recognized G. resinaceum (GU451247) obtained from China as well as G. resinaceum (GU451247) obtained from India. The antimicrobial potential of mushroom composite and AgNPs showed high efficacy against pathogenic Staphylococcus aureus (ZOI 23 mm) K. pneumonia (ZOI 20 mm), Pseudomonas aeruginosa (ZOI 24 mm) and E. fecalis and A. baumannii (ZOI 10 mm), and multidrug resistant (MDR) A. baumannii (ZOI 24 mm). XRD evaluation revealed the crystalline composition of synthesized NPs with diameter of 45 nm. UV-Vis spectroscopy obsorption peaked of 589 nm confirmed the presence of AgNPs. SEM results showed the cubic morphology of AgNPs. The FTIR analysis of NPs obtained from G. resinaceum containing C=O as well as (O=C-H) stretching revealed presence of hydrogen, carbonyl and amide groups. The synthesized extract and AgNPs showed promising minimum inhibitory concentration (MIC) at 2 mg concentration against the MDR strains. AgNPs are observed to be efficient as they need less quantities to prevent bacterial growth. In the view of challenges for developing antimicrobial NPs of variable shape and size by various other methods, tuning nanoparticles synthesized via mushrooms can be a wonderful approach to resolve existing hurdles.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Humanos , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química
2.
Molecules ; 28(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37687119

RESUMO

The use of natural products isolated from mushrooms against infection, cancer diseases and other oxidative-stress-related diseases is one of the cornerstones of modern medicine. Therefore, we tried to establish a combination of medicinal mushrooms and nanotechnology possibly with the field of medicine for the development of antibacterial agents against these MDR strains. The aim of the research was to understand the molecular identification, characterization and antibacterial action of Calvatia gigantea and Mycena leaiana. The identification of fruiting body species via morpho-anatomical and molecular methods was necessary to analyze the genetic variability and phylogenetic relationships of mushrooms. Phylogenetic analysis revealed that Calvatia from Hunza, Pakistan, exhibited 98% resemblance to the previously discovered Langermannia gigantean (DQ112623) and L. gigantean (LN714562) from northern Europe, and Mycena (Pakistan) showed a 97% similarity to M. leaiana (MF686520) and M. leaiana (MW448623) from the USA. UV-vis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used for AgNPs' characterization. The UV-vis absorption peak of 500-600 nm indicates the AgNPs' presence. XRD results determined Calvatia gigantea AgNPs were nanocrystals and Mycena leaiana seems to be amorphous. In addition, SEM results showed the cubic morphology of C. gigantea with a diameter of 65 nm, and the FTIR spectra of fruiting body revealed the presence of functional groups-carboxyl, nitro, and hydroxyl-in AgNPs, which catalyzed the reduction of Ag+ to Ag0. Further antibacterial activity of mushrooms against MDR strains was determined via agar well diffusion assay, and Minimum Inhibitory Concentration (MIC) was estimated by qualitative experimentation using the broth dilution method. All experiments were conducted in triplicate. The results showed that the mushroom AgNPs, along with their synergy and nano-composites (with the exception of Ethyl-acetate), were shown to have zones of inhibition from 4 mm to 29 mm against multidrug-resistant pathogens such as Acinetobacter baumannii, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumonia, Proteus mirabilis, Enterobacter cloacae and Escherichia coli. The mushroom composites were active against most of the tested microorganisms whilst the lowest MIC value (10-40 mg/mL) was recorded against MDR strains. Hence, the present study suggested the possibility of employing compounds present in mushrooms for the development of new antibacterial agents, as well as efflux pump inhibitors.


Assuntos
Agaricales , Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Filogenia , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Escherichia coli
3.
Pak J Pharm Sci ; 36(3(Special)): 941-946, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37587702

RESUMO

The current research investigation demonstrated that the aqueous leaves extract of Rosamarinus officinalis possesses cardinal phyto-chemicals to fabricate AgNPs in an eco-friendly way. The phyto-synthesized AgNPs were characterized to be stable, monodispersed, polycrystalline and mostly spheroidal in conformation. The nano-spheriods were observed to be 25-75 nm in diameter, displaying λmax peak at 430 nm. From the comparative antimicrobial investigations, it was observed that AgNPs manifested tremendous bactericidal properties against all test organisms particularly S. epidermis (89%), S. aureus (84%) and K. pneumonia (84%), owing least MIC values of 40µL. The aced fungicidal activity was also exhibited by AgNPs against all fungal test species particularly C. herbarum (90%), A. flavus (85%), R. stolonifer (85%) and C. jadinii (85%). In contrast to AgNPs, all crude ethanolic, aqueous, methanolic and n-hexanoic extracts manifested less to moderate antimicrobial activity against all test micro-organisms with three-fold escalating MIC values i.e., 160µL.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Prata/farmacologia , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Folhas de Planta , Extratos Vegetais/farmacologia
4.
Pak J Pharm Sci ; 36(3(Special)): 981-987, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37587708

RESUMO

The study aimed to synthesize zinc nanoparticles (Zn-NPs) using an aqueous extract derived from Acacia modesta Wall. leaves. Several characterization techniques were employed to confirm the successful formation of zinc nanoparticles. UV-visible spectrophotometry indicated a peak at 374 nm, validating the bioreduction process. Scanning electron microscopy (SEM) was utilized to analyze the morphology, transmission electron microscopy (TEM) to determine particle size and shape, X-ray diffraction (XRD) for crystalline structure analysis, energy-dispersive X-ray spectroscopy (EDX) for elemental composition and Fourier-transform infrared spectroscopy (FTIR) to identify functional groups. The synthesized Zn-NPs demonstrated remarkable antibacterial activity against Escherichia coli (95% inhibition) and moderate antifungal activity against Candida albicans (70% inhibition). In phytotoxicity tests, the Zn-NPs exhibited a 55% reduction in the growth of Lamina minor at the highest dilution (1000 µl). Based on these findings, the study concluded that the green-synthesized Zn-NPs hold great potential as effective antibiotics against pathogenic bacteria and could be utilized in various industrial and agricultural applications.


Assuntos
Acacia , Fabaceae , Nanopartículas Metálicas , Zinco , Agricultura , Antibacterianos/farmacologia , Escherichia coli
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa