Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Molecules ; 26(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803208

RESUMO

Bioconjugation has allowed scientists to combine multiple functional elements into one biological or biochemical unit. This assembly can result in the production of constructs that are targeted to a specific site or cell type in order to enhance the response to, or activity of, the conjugated moiety. In the case of cancer treatments, selectively targeting chemotherapies to the cells of interest limit harmful side effects and enhance efficacy. Targeting through conjugation is also advantageous in delivering treatments to difficult-to-reach tissues, such as the brain or infections deep in the lung. Bacterial infections can be more selectively treated by conjugating antibiotics to microbe-specific entities; helping to avoid antibiotic resistance across commensal bacterial species. In the case of vaccine development, conjugation is used to enhance efficacy without compromising safety. In this work, we will review the previously mentioned areas in which bioconjugation has created new possibilities and advanced treatments.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico , Estrogênios Conjugados (USP)/história , Estrogênios Conjugados (USP)/farmacologia , História do Século XX , História do Século XXI , Humanos , Imunoconjugados/história , Imunoconjugados/farmacologia , Nanopartículas/química , Preparações Farmacêuticas , Vacinas Conjugadas/história , Vacinas Conjugadas/farmacologia
2.
Infect Immun ; 87(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31085702

RESUMO

Inhalation of Francisella tularensis causes pneumonic tularemia in humans, a severe disease with a 30 to 60% mortality rate. The reproducible delivery of aerosolized virulent bacteria in relevant animal models is essential for evaluating medical countermeasures. Here we developed optimized protocols for infecting New Zealand White (NZW) rabbits with aerosols containing F. tularensis We evaluated the relative humidity, aerosol exposure technique, and bacterial culture conditions to optimize the spray factor (SF), a central metric of aerosolization. This optimization reduced both inter- and intraday variability and was applicable to multiple isolates of F. tularensis Further improvements in the accuracy and precision of the inhaled pathogen dose were achieved through enhanced correlation of the bacterial culture optical density and the number of CFU. Plethysmograph data collected during exposures found that respiratory function varied considerably between rabbits, was not a function of weight, and did not improve with acclimation to the system. Live vaccine strain (LVS)-vaccinated rabbits were challenged via aerosol with human-virulent F. tularensis SCHU S4 that had been cultivated in either Mueller-Hinton broth (MHB) or brain heart infusion (BHI) broth. LVS-vaccinated animals challenged with SCHU S4 that had been cultivated in MHB experienced short febrile periods (median, 3.2 days), limited weight loss (<5%), and longer median survival times (∼18 days) that were significantly different from those for unvaccinated controls. In contrast, LVS-vaccinated rabbits challenged with SCHU S4 that had been cultivated in BHI experienced longer febrile periods (median, 5.5 days) and greater weight loss (>10%) than the unvaccinated controls and median survival times that were not significantly different from those for the unvaccinated controls. These studies highlight the importance of careful characterization and optimization of protocols for aerosol challenge with pathogenic agents.


Assuntos
Modelos Animais de Doenças , Tularemia/etiologia , Aerossóis , Animais , Vacinas Bacterianas/imunologia , Depsipeptídeos , Feminino , Francisella tularensis/imunologia , Exposição por Inalação , Masculino , Tamanho da Partícula , Coelhos , Reprodutibilidade dos Testes , Tularemia/mortalidade , Tularemia/fisiopatologia , Vacinação
3.
Infect Immun ; 84(5): 1387-1402, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26902724

RESUMO

Francisella tularensis is the causative agent of tularemia and a category A potential agent of bioterrorism, but the pathogenic mechanisms of F. tularensis are largely unknown. Our previous transposon mutagenesis screen identified 95 lung infectivity-associated F. tularensis genes, including those encoding the Lon and ClpP proteases. The present study validates the importance of Lon and ClpP in intramacrophage growth and infection of the mammalian host by using unmarked deletion mutants of the F. tularensis live vaccine strain (LVS). Further experiments revealed that lon and clpP are also required for F. tularensis tolerance to stressful conditions. A quantitative proteomic comparison between heat-stressed LVS and the isogenic Lon-deficient mutant identified 29 putative Lon substrate proteins. The follow-up protein degradation experiments identified five substrates of the F. tularensis Lon protease (FTL578, FTL663, FTL1217, FTL1228, and FTL1957). FTL578 (ornithine cyclodeaminase), FTL663 (heat shock protein), and FTL1228 (iron-sulfur activator complex subunit SufD) have been previously described as virulence-associated factors in F. tularensis Identification of these Lon substrates has thus provided important clues for further understanding of the F. tularensis stress response and pathogenesis. The high-throughput approach developed in this study can be used for systematic identification of the Lon substrates in other prokaryotic and eukaryotic organisms.


Assuntos
Endopeptidase Clp/metabolismo , Francisella tularensis/enzimologia , Francisella tularensis/fisiologia , Protease La/metabolismo , Estresse Fisiológico , Tularemia/microbiologia , Fatores de Virulência/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Endopeptidase Clp/genética , Feminino , Francisella tularensis/genética , Deleção de Genes , Loci Gênicos , Humanos , Macrófagos/microbiologia , Camundongos Endogâmicos BALB C , Protease La/genética , Tularemia/patologia , Fatores de Virulência/genética
4.
Antimicrob Agents Chemother ; 57(10): 4831-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877686

RESUMO

Acinetobacter baumannii is a nosocomial opportunistic pathogen that can cause severe infections, including hospital-acquired pneumonia, wound infections, and sepsis. Multidrug-resistant (MDR) strains are prevalent, further complicating patient treatment. Due to the increase in MDR strains, the cationic antimicrobial peptide colistin has been used to treat A. baumannii infections. Colistin-resistant strains of A. baumannii with alterations to the lipid A component of lipopolysaccharide (LPS) have been reported; specifically, the lipid A structure was shown to be hepta-acylated with a phosphoethanolamine (pEtN) modification present on one of the terminal phosphate residues. Using a tandem mass spectrometry platform, we provide definitive evidence that the lipid A isolated from colistin-resistant A. baumannii MAC204 LPS contains a novel structure corresponding to a diphosphoryl hepta-acylated lipid A structure with both pEtN and galactosamine (GalN) modifications. To correlate our structural studies with clinically relevant samples, we characterized colistin-susceptible and -resistant isolates obtained from patients. These results demonstrated that the clinical colistin-resistant isolate had the same pEtN and GalN modifications as those seen in the laboratory-adapted A. baumannii strain MAC204. In summary, this work has shown complete structure characterization including the accurate assignment of acylation, phosphorylation, and glycosylation of lipid A from A. baumannii, which are important for resistance to colistin.


Assuntos
Acinetobacter baumannii/química , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Colistina/farmacologia , Lipopolissacarídeos/química , Cromatografia Líquida , Espectrometria de Massas
5.
Immunol Cell Biol ; 91(2): 139-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23247654

RESUMO

We have previously demonstrated that immunization with the inactivated Francisella tularensis, a Category A intracellular mucosal pathogen, combined with IgG2a anti-F. tularensis monoclonal antibody (Ab), enhances protection against subsequent F. tularensis challenge. To understand the mechanism(s) involved, we examined the binding, internalization, presentation, and in vivo trafficking of inactivated F. tularensis in the presence and absence of opsonizing monoclonal Ab. We found that when inactivated F. tularensis is combined with anti-F. tularensis monoclonal Ab, presentation to F. tularensis-specific T cells is enhanced. This enhancement is Fc receptor (FcR)-dependent, and requires a physical linkage between the monoclonal Ab and the inactivated F. tularensis immunogen. This enhanced presentation is due, in part, to enhanced binding and internalization of inactivated F. tularensis by antigen(Ag)-presenting cells, and involves interactions with multiple FcR types. Furthermore, targeting inactivated F. tularensis to FcRs enhances dendritic cell maturation and extends the time period over which Ag-presenting cells stimulate T cells. In vivo trafficking studies reveal enhanced transport of inactivated F. tularensis immunogen to the nasal-associated lymphoid tissue in the presence of monoclonal Ab, which is FcRn-dependent. In summary, these are the first comprehensive studies using a single-vaccine protection model/immunogen to establish the array of mechanisms involved in enhanced immunity/protection mediated by an FcR-targeted mucosal immunogen. These results demonstrate that multiple cellular/immune mechanisms contribute to FcR-enhanced immunity.


Assuntos
Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Francisella tularensis/imunologia , Imunidade/imunologia , Viabilidade Microbiana/imunologia , Administração Intranasal , Animais , Especificidade de Anticorpos/imunologia , Apresentação de Antígeno/imunologia , Complexo Antígeno-Anticorpo/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Endocitose/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Receptores Fc/metabolismo , Especificidade da Espécie , Linfócitos T/imunologia
6.
Proc Natl Acad Sci U S A ; 107(14): 6240-5, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20304799

RESUMO

Little is known about the mechanisms by which Treponema pallidum (Tp), the causative agent of syphilis, copes with oxidative stress as it establishes persistent infection within its obligate human host. The Tp genomic sequence indicates that the bacterium's antioxidant defenses do not include glutathione and are limited to just a few proteins, with only one, TP0509, offering direct defense against peroxides. Although this Tp peroxiredoxin (Prx) closely resembles AhpC-like Prxs, Tp lacks AhpF, the typical reductant for such enzymes. Functionally, TpAhpC resembles largely eukaryotic, nonAhpC typical 2-Cys Prx proteins in using thioredoxin (Trx, TP0919) as an efficient electron donor and exhibiting broad specificity toward hydroperoxide substrates. Unlike many of the eukaryotic Prxs, however, TpAhpC is relatively resistant to inactivation during turnover with hydroperoxide substrates. As is often observed in typical 2-Cys Prxs, TpAhpC undergoes redox-sensitive oligomer formation. Quantitative immunoblotting revealed that TpTrx and TpAhpC are present at very high levels (over 100 and 300 microM, respectively) in treponemes infecting rabbit testes; their redox potentials, at -242 +/- 1 and -192 +/- 2 mV, respectively, are consistent with the role of TpTrx as the cellular reductant of TpAhpC. Transcriptional analysis of select antioxidant genes confirmed the presence of high mRNA levels for ahpC and trx which diminish greatly when spirochetes replicate under in vitro growth conditions. Thus, T. pallidum has evolved an extraordinarily robust, broad-spectrum AhpC as its sole mechanism for peroxide defense to combat this significant threat to treponemal growth and survival during infection.


Assuntos
Antioxidantes/metabolismo , Peroxirredoxinas/metabolismo , Tiorredoxinas/metabolismo , Treponema pallidum/metabolismo , Sequência de Aminoácidos , Animais , Genoma Bacteriano , Dados de Sequência Molecular , Oxirredução , Peroxirredoxinas/química , Coelhos , Alinhamento de Sequência , Especificidade por Substrato , Transcrição Gênica , Treponema pallidum/genética
7.
Mol Microbiol ; 82(3): 679-97, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21923763

RESUMO

In a microarray analysis of the RpoS regulon in mammalian host-adapted Borrelia burgdorferi, bb0728 (cdr) was found to be dually transcribed by the sigma factors σ(70) and RpoS. The cdr gene encodes a coenzyme A disulphide reductase (CoADR) that reduces CoA-disulphides to CoA in an NADH-dependent manner. Based on the abundance of CoA in B. burgdorferi and the biochemistry of the enzyme, CoADR has been proposed to play a role in the spirochaete's response to reactive oxygen species. To better understand the physiologic function(s) of BbCoADR, we generated a B. burgdorferi mutant in which the cdr gene was disrupted. RT-PCR and 5'-RACE analysis revealed that cdr and bb0729 are co-transcribed from a single transcriptional start site upstream of the bb0729 coding sequence; a shuttle vector containing the bb0729-cdr operon and upstream promoter element was used to complement the cdr mutant. Although the mutant was no more sensitive to hydrogen peroxide than its parent, it did exhibit increased sensitivity to high concentrations of t-butyl-hydroperoxide, an oxidizing compound that damages spirochetal membranes. Characterization of the mutant during standard (15% oxygen, 6% CO(2)) and anaerobic (< 1% O(2) , 9-13% CO(2)) cultivation at 37°C revealed a growth defect under both conditions that was particularly striking during anaerobiosis. The mutant was avirulent by needle inoculation and showed decreased survival in feeding nymphs, but displayed no survival defect in unfed flat nymphs. Based on these results, we propose that BbCoADR is necessary to maintain optimal redox ratios for CoA/CoA-disulphide and NAD(+) /NADH during periods of rapid replication throughout the enzootic cycle, to support thiol-disulphide homeostasis, and to indirectly protect the spirochaete against peroxide-mediated membrane damage; one or more of these functions are essential for infection of the mammalian host by B. burgdorferi.


Assuntos
Borrelia burgdorferi/enzimologia , Borrelia burgdorferi/crescimento & desenvolvimento , Coenzima A/metabolismo , NADH NADPH Oxirredutases/metabolismo , Fatores de Virulência/metabolismo , Aerobiose , Sequência de Aminoácidos , Anaerobiose , Animais , Antibacterianos/toxicidade , Artrite/microbiologia , Artrite/patologia , Infecções por Borrelia/microbiologia , Infecções por Borrelia/patologia , Borrelia burgdorferi/efeitos dos fármacos , Borrelia burgdorferi/genética , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Ixodes , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , NADH NADPH Oxirredutases/genética , Ninfa/microbiologia , Oxidantes/toxicidade , Homologia de Sequência , Análise de Sobrevida , Transcrição Gênica , Virulência
8.
Pathogens ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34959601

RESUMO

Identifying correlates of protection (COPs) for vaccines against lethal human (Hu) pathogens, such as Francisella tularensis (Ft), is problematic, as clinical trials are currently untenable and the relevance of various animal models can be controversial. Previously, Hu trials with the live vaccine strain (LVS) demonstrated ~80% vaccine efficacy against low dose (~50 CFU) challenge; however, protection deteriorated with higher challenge doses (~2000 CFU of SchuS4) and no COPs were established. Here, we describe our efforts to develop clinically relevant, humoral COPs applicable to high-dose, aerosol challenge with S4. First, our serosurvey of LVS-vaccinated Hu and animals revealed that rabbits (Rbs), but not rodents, recapitulate the Hu O-Ag dependent Ab response to Ft. Next, we assayed Rbs immunized with distinct S4-based vaccine candidates (S4ΔclpB, S4ΔguaBA, and S4ΔaroD) and found that, across multiple vaccines, the %O-Ag dep Ab trended with vaccine efficacy. Among S4ΔguaBA-vaccinated Rbs, the %O-Ag dep Ab in pre-challenge plasma was significantly higher in survivors than in non-survivors; a cut-off of >70% O-Ag dep Ab predicted survival with high sensitivity and specificity. Finally, we found this COP in 80% of LVS-vaccinated Hu plasma samples as expected for a vaccine with 80% Hu efficacy. Collectively, the %O-Ag dep Ab response is a bona fide COP for S4ΔguaBA-vaccinated Rb and holds significant promise for guiding vaccine trials with higher animals.

9.
Infect Immun ; 76(10): 4479-88, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18644878

RESUMO

The intracellular bacterium Francisella tularensis survives in mammals, arthropods, and freshwater amoeba. It was previously established that the conventional media used for in vitro propagation of this microbe do not yield bacteria that mimic those harvested from infected mammals; whether these in vitro-cultivated bacteria resemble arthropod- or amoeba-adapted Francisella is unknown. As a foundation for our goal of identifying F. tularensis outer membrane proteins which are expressed during mammalian infection, we first sought to identify in vitro cultivation conditions that induce the bacterium's infection-derived phenotype. We compared Francisella LVS grown in brain heart infusion broth (BHI; a standard microbiological medium rarely used in Francisella research) to that grown in Mueller-Hinton broth (MHB; the most widely used F. tularensis medium, used here as a negative control) and macrophages (a natural host cell, used here as a positive control). BHI- and macrophage-grown F. tularensis cells showed similar expression of MglA-dependent and MglA-independent proteins; expression of the MglA-dependent proteins was repressed by the supraphysiological levels of free amino acids present in MHB. We observed that during macrophage infection, protein expression by intracellular bacteria differed from that by extracellular bacteria; BHI-grown bacteria mirrored the latter, while MHB-grown bacteria resembled neither. Naïve macrophages responding to BHI- and macrophage-grown bacteria produced markedly lower levels of proinflammatory mediators than those in cells exposed to MHB-grown bacteria. In contrast to MHB-grown bacteria, BHI-grown bacteria showed minimal delay during intracellular replication. Cumulatively, our findings provide compelling evidence that growth in BHI yields bacteria which recapitulate the phenotype of Francisella organisms that have emerged from macrophages.


Assuntos
Meios de Cultura/química , Francisella tularensis/fisiologia , Macrófagos/microbiologia , Adaptação Fisiológica , Animais , Proteínas de Bactérias/análise , Western Blotting , Contagem de Colônia Microbiana , Citocinas/biossíntese , Francisella tularensis/química , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Viabilidade Microbiana , Proteoma/análise , Análise de Sobrevida , Tularemia/microbiologia
10.
Front Immunol ; 9: 1594, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042767

RESUMO

Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and improved tools to assess these vaccines. Ft expresses distinct sets of antigens (Ags) in vivo as compared to those expressed in vitro. Importantly, Ft grown in brain-heart infusion medium (BHIM) more closely mimics the antigenic profile of macrophage-grown Ft when compared to Mueller-Hinton medium (MHM)-grown Ft. Thus, we predicted that when used as a live vaccine BHIM-grown Ft (BHIM-Ft) would provide better protection, as compared to MHM-Ft. We first determined if there was a difference in growth kinetics between BHIM and MHM-Ft. We found that BHIM-Ft exhibited an initial growth advantage ex vivo that manifests as slightly hastened intracellular replication as compared to MHM-Ft. We also observed that BHIM-Ft exhibited an initial growth advantage in vivo represented by rapid bacterial expansion and systemic dissemination associated with a slightly shorter mean survival time of naive animals. Next, using two distinct strains of Ft LVS (WT and sodB), we observed that mice vaccinated with live BHIM-Ft LVS exhibited significantly better protection against Ft SchuS4 respiratory challenge compared to MHM-Ft-immunized mice. This enhanced protection correlated with lower bacterial burden, reduced tissue inflammation, and reduced pro-inflammatory cytokine production late in infection. Splenocytes from BHIM-Ft sodB-immunized mice contained more CD4+, effector, memory T-cells, and were more effective at limiting intracellular replication of Ft LVS in vitro. Concurrent with enhanced killing of Ft LVS, BHIM-Ft sodB-immune splenocytes produced significantly higher levels of IFN-γ and IL-17A cytokines than their MHM-Ft sodB-immunized counterparts indicating development of a more effective T cell memory response when immunizing mice with BHIM-Ft.

11.
PLoS One ; 13(12): e0207587, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30533047

RESUMO

Francisella tularensis (Ft) is a biothreat agent for which there is no FDA-approved human vaccine. Currently, there are substantial efforts underway to develop both vaccines and the tools to assess these vaccines. Tularemia laboratory research has historically relied primarily upon a small number of inbred mouse strains, but the utility of such findings to outbred animals may be limited. Specifically, C57BL/6 mice are more susceptible than BALB/c mice to Ft infection and less easily protected against challenge with highly virulent type A Ft. Thus, depending on the inbred mouse strain used, one could be misled as to which immunogen(s)/vaccine will ultimately be effective in an outbred human population. Accordingly, we evaluated an outbred Swiss Webster (SW) mouse model in direct comparison to a well-established, inbred C57BL/6 mouse model. Mucosal vaccination with the live, attenuated Ft LVS superoxide dismutase (sodB) mutant demonstrated significantly higher protection in outbred SW mice compared to inbred C57BL/6 mice against Ft SchuS4 respiratory challenge. The protection observed in vaccinated outbred mice correlated with lower bacterial density, reduced tissue inflammation, and reduced levels of pro-inflammatory cytokine production. This protection was CD4+ and CD8+ T cell-dependent and characterized by lower titers of serum antibody (Ab) that qualitatively differed from vaccinated inbred mice. Enhanced protection of vaccinated outbred mice correlated with early and robust production of IFN-γ and IL-17A. Neutralizing Ab administered at the time of challenge revealed that IFN-γ was central to this protection, while IL-17A neutralization did not alter bacterial burden or survival. The present study demonstrates the utility of the outbred mouse as an alternative vaccination model for testing tularemia vaccines. Given the limited MHC repertoire in inbred mice, this outbred model is more analogous to the human in terms of immunological diversity.


Assuntos
Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Animais , Antígenos de Bactérias/imunologia , Proteínas de Bactérias/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Francisella tularensis/genética , Francisella tularensis/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Superóxido Dismutase/genética , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Vacinação
12.
PLoS One ; 13(10): e0205928, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30346998

RESUMO

Tularemia, also known as rabbit fever, is a severe zoonotic disease in humans caused by the gram-negative bacterium Francisella tularensis (Ft). While there have been a number of attempts to develop a vaccine for Ft, few candidates have advanced beyond experiments in inbred mice. We report here that a prime-boost strategy with aerosol delivery of recombinant live attenuated candidate Ft S4ΔaroD offers significant protection (83% survival) in an outbred animal model, New Zealand White rabbits, against aerosol challenge with 248 cfu (11 LD50) of virulent type A Ft SCHU S4. Surviving rabbits given two doses of the attenuated strains by aerosol did not exhibit substantial post-challenge fevers, changes in erythrocyte sedimentation rate or in complete blood counts. At a higher challenge dose (3,186 cfu; 139 LD50), protection was still good with 66% of S4ΔaroD-vaccinated rabbits surviving while 50% of S4ΔguaBA vaccinated rabbits also survived challenge. Pre-challenge plasma IgG titers against Ft SCHU S4 corresponded with survival time after challenge. Western blot analysis found that plasma antibody shifted from predominantly targeting Ft O-antigen after the prime vaccination to other antigens after the boost. These results demonstrate the superior protection conferred by a live attenuated derivative of virulent F. tularensis, particularly when given in an aerosol prime-boost regimen.


Assuntos
Aerossóis/uso terapêutico , Vacinas Bacterianas/imunologia , Francisella tularensis/patogenicidade , Imunização Secundária , Tularemia/imunologia , Tularemia/prevenção & controle , Vacinação , Animais , Animais não Endogâmicos , Anticorpos Antibacterianos/sangue , Sedimentação Sanguínea , Relação Dose-Resposta Imunológica , Imunoglobulina G/sangue , Coelhos , Análise de Sobrevida , Tularemia/sangue , Tularemia/microbiologia , Virulência , Redução de Peso
13.
Front Microbiol ; 8: 1158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28690600

RESUMO

The gram-negative bacterium Francisella tularensis (Ft) is both a potential biological weapon and a naturally occurring microbe that survives in arthropods, fresh water amoeba, and mammals with distinct phenotypes in various environments. Previously, we used a number of measurements to characterize Ft grown in Brain-Heart Infusion (BHI) broth as (1) more similar to infection-derived bacteria, and (2) slightly more virulent in naïve animals, compared to Ft grown in Mueller Hinton Broth (MHB). In these studies we observed that the free amino acids in MHB repress expression of select Ft virulence factors by an unknown mechanism. Here, we tested the hypotheses that Ft grown in BHI (BHI-Ft) accurately displays a full protein composition more similar to that reported for infection-derived Ft and that this similarity would make BHI-Ft more susceptible to pre-existing, vaccine-induced immunity than MHB-Ft. We performed comprehensive proteomic analysis of Ft grown in MHB, BHI, and BHI supplemented with casamino acids (BCA) and compared our findings to published "omics" data derived from Ft grown in vivo. Based on the abundance of ~1,000 proteins, the fingerprint of BHI-Ft is one of nutrient-deprived bacteria that-through induction of a stringent-starvation-like response-have induced the FevR regulon for expression of the bacterium's virulence factors, immuno-dominant antigens, and surface-carbohydrate synthases. To test the notion that increased abundance of dominant antigens expressed by BHI-Ft would render these bacteria more susceptible to pre-existing, vaccine-induced immunity, we employed a battery of LVS-vaccination and S4-challenge protocols using MHB- and BHI-grown Ft S4. Contrary to our hypothesis, these experiments reveal that LVS-immunization provides a barrier to infection that is significantly more effective against an MHB-S4 challenge than a BHI-S4 challenge. The differences in apparent virulence to immunized mice are profoundly greater than those observed with primary infection of naïve mice. Our findings suggest that tularemia vaccination studies should be critically evaluated in regard to the growth conditions of the challenge agent.

14.
J Bioterror Biodef ; 7(2)2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27695643

RESUMO

One of the hallmarks of pulmonary tularemia, which results from inhalation of Francisella tularensis - a significant bioterrorism concern, is the lack of an acute TH1-biased inflammatory response in the early phase of disease (days 1-3) despite significant bacterial loads. In an effort to understand this apparent hypo-responsiveness, many laboratories have utilized in vitro cell-based models as tools to probe the nature and consequences of host cell interactions with F. tularensis. The first uses of this model suggested that mammalian host cells recognize this bacterium principally through TLR2 to evoke a robust, classical TH1-biased cytokine response including TNF, IL-6, IL-1ß, and IFN-γ. Others used this model in concert with a variety of non-genetic perturbations of the bacterial-host cell interaction and suggested that F. tularensis actively-suppressed the cellular response. Consistent with this notion, others engaged this model to assess isogenic mutants and, in many cases, found the mutant bacteria to be more pro-inflammatory than their WT counter-parts. Frequently, these observations were interpreted as evidence for the immunosuppressive function of the gene of interest. However, recently appreciated roles of the health of the bacterium and the impact of host factors have refined this model to suggest a "stealthy" mode of bacterial-host cell interaction (rather than one involving active suppression) consistent with the observations during early phase disease.

15.
Front Immunol ; 7: 677, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28119692

RESUMO

Francisella tularensis (Ft) is a category A biothreat agent for which there is no Food and Drug Administration-approved vaccine. Ft can survive in a variety of habitats with a remarkable ability to adapt to changing environmental conditions. Furthermore, Ft expresses distinct sets of antigens (Ags) when inside of macrophages (its in vivo host) as compared to those grown in vitro with Mueller Hinton Broth (MHB). However, in contrast to MHB-grown Ft, Ft grown in Brain-Heart Infusion (BHI) more closely mimics the antigenic profile of macrophage-grown Ft. Thus, we anticipated that when used as a vaccine, BHI-grown Ft would provide better protection compared to MHB-grown Ft, primarily due to its greater antigenic similarity to Ft circulating inside the host (macrophages) during natural infection. Our investigation, however, revealed that inactivated Ft (iFt) grown in MHB (iFt-MHB) exhibited superior protective activity when used as a vaccine, as compared to iFt grown in BHI (iFt-BHI). The superior protection afforded by iFt-MHB compared to that of iFt-BHI was associated with significantly lower bacterial burden and inflammation in the lungs and spleens of vaccinated mice. Moreover, iFt-MHB also induced increased levels of Ft-specific IgG. Further evaluation of early immunological cues also revealed that iFt-MHB exhibits increased engagement of Ag-presenting cells including increased iFt binding to dendritic cells, increased expression of costimulatory markers, and increased secretion of pro-inflammatory cytokines. Importantly, these studies directly demonstrate that Ft growth conditions strongly impact Ft vaccine efficacy and that the growth medium used to produce whole cell vaccines to Ft must be a key consideration in the development of a tularemia vaccine.

16.
Microbes Infect ; 4(11): 1133-40, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12361913

RESUMO

Cutaneous immunobiology and spirochetal molecular biology have allowed investigators to propose a conceptual framework for the development of both the innate and adaptive immune response to Treponema pallidum infection. While some clinical manifestations can be attributed to humoral responses, most can be attributed to a combination of local innate and adaptive cellular immunity.


Assuntos
Sífilis/imunologia , Treponema pallidum/patogenicidade , Formação de Anticorpos , Vesícula/etiologia , Vesícula/imunologia , Genoma , Humanos , Imunidade Celular , Lipoproteínas/agonistas , Lipoproteínas/metabolismo , Polimorfismo Genético , Análise de Sequência de DNA , Sífilis/patologia , Treponema pallidum/imunologia , Treponema pallidum/ultraestrutura
17.
PLoS One ; 8(3): e58513, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554897

RESUMO

Francisella tularensis (Ft) is a highly infectious intracellular pathogen and the causative agent of tularemia. Because Ft can be dispersed via small droplet-aerosols and has a very low infectious dose it is characterized as a category A Select Agent of biological warfare. Respiratory infection with the attenuated Live Vaccine Strain (LVS) and the highly virulent SchuS4 strain of Ft engenders intense peribronchiolar and perivascular inflammation, but fails to elicit select pro-inflammatory mediators (e.g., TNF, IL-1ß, IL-6, IL-12, and IFN-γ) within the first ~72 h. This in vivo finding is discordant with the principally TH1-oriented response to Ft frequently observed in cell-based studies wherein the aforementioned cytokines are produced. An often overlooked confounding factor in the interpretation of experimental results is the influence of environmental cues on the bacterium's capacity to elicit certain host responses. Herein, we reveal that adaptation of Ft to its mammalian host imparts an inability to elicit select pro-inflammatory mediators throughout the course of infection. Furthermore, in vitro findings that non-host adapted Ft elicits such a response from host cells reflect aberrant recognition of the DNA of structurally-compromised bacteria by AIM2-dependent and -independent host cell cytosolic DNA sensors. Growth of Ft in Muller-Hinton Broth or on Muller-Hinton-based chocolate agar plates or genetic mutation of Ft was found to compromise the structural integrity of the bacterium thus rendering it capable of aberrantly eliciting pro-inflammatory mediators (e.g., TNF, IL-1ß, IL-6, IL-12, and IFN-γ). Our studies highlight the profound impact of different growth conditions on host cell response to infection and demonstrate that not all in vitro-derived findings may be relevant to tularemia pathogenesis in the mammalian host. Rational development of a vaccine and immunotherapeutics can only proceed from a foundation of knowledge based upon in vitro findings that recapitulate those observed during natural infection.


Assuntos
Citocinas/imunologia , Francisella tularensis/imunologia , Infecções Respiratórias/imunologia , Tularemia/imunologia , Animais , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/farmacologia , Francisella tularensis/patogenicidade , Humanos , Inflamação/imunologia , Inflamação/microbiologia , Inflamação/patologia , Camundongos , Camundongos Knockout , Infecções Respiratórias/microbiologia , Infecções Respiratórias/patologia , Tularemia/microbiologia , Tularemia/patologia , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia
18.
Vaccine ; 29(40): 6941-7, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21803089

RESUMO

Francisella tularensis is a highly pathogenic gram negative bacterium that infects multiple sites in a host, including the skin and the respiratory tract, which can lead to the onset of a deadly disease with a 50% mortality rate. The live vaccine strain (LVS) of F. tularensis, while attenuated in humans but still virulent in mice, is not an option for vaccine use in the United States due to safety concerns, and currently no FDA approved vaccine exists. The purpose of the present work was to assess the ability of recombinant Francisella outer membrane protein A (FopA) to induce a protective response in mice. The gene encoding FopA from F. tularensis LVS was cloned and expressed in Escherichia coli. The resulting recombinant protein was affinity-purified from the E. coli outer membrane, incorporated into liposomes and administered to mice via multiple routes. FopA-immunized mice produced FopA-specific antibodies and were protected against both lethal intradermal and intranasal challenges with F. tularensis LVS. The vaccinated mice had reduced bacterial numbers in their lungs, livers and spleens during infection, and complete bacterial clearance was observed by day 28 post infection. Passive transfer of FopA-immune serum protected naïve mice against lethal F. tularensis LVS challenge, showing that humoral immunity played an important role in vaccine efficacy. FopA-immunization was unable to protect against challenge with the fully virulent SchuS4 strain of F. tularensis; however, the findings demonstrate proof of principle that an immune response generated against a component of a subunit vaccine is protective against lethal respiratory and intradermal tularemia.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Francisella tularensis/imunologia , Tularemia/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Vacinas Bacterianas/farmacologia , Escherichia coli/genética , Escherichia coli/imunologia , Francisella tularensis/genética , Soros Imunes/imunologia , Imunidade Humoral/imunologia , Lipossomos/química , Lipossomos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Tularemia/prevenção & controle , Tularemia/terapia
19.
PLoS One ; 6(7): e22335, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799828

RESUMO

BACKGROUND: The gram-negative bacterium Francisella tularensis survives in arthropods, fresh water amoeba, and mammals with both intracellular and extracellular phases and could reasonably be expected to express distinct phenotypes in these environments. The presence of a capsule on this bacterium has been controversial with some groups finding such a structure while other groups report that no capsule could be identified. Previously we reported in vitro culture conditions for this bacterium which, in contrast to typical methods, yielded a bacterial phenotype that mimics that of the bacterium's mammalian, extracellular phase. METHODS/FINDINGS: SDS-PAGE and carbohydrate analysis of differentially-cultivated F. tularensis LVS revealed that bacteria displaying the host-adapted phenotype produce both longer polymers of LPS O-antigen (OAg) and additional HMW carbohydrates/glycoproteins that are reduced/absent in non-host-adapted bacteria. Analysis of wildtype and OAg-mutant bacteria indicated that the induced changes in surface carbohydrates involved both OAg and non-OAg species. To assess the impact of these HMW carbohydrates on the access of outer membrane constituents to antibody we used differentially-cultivated bacteria in vitro to immunoprecipitate antibodies directed against outer membrane moieties. We observed that the surface-carbohydrates induced during host-adaptation shield many outer membrane antigens from binding by antibody. Similar assays with normal mouse serum indicate that the induced HMW carbohydrates also impede complement deposition. Using an in vitro macrophage infection assay, we find that the bacterial HMW carbohydrate impedes TLR2-dependent, pro-inflammatory cytokine production by macrophages. Lastly we show that upon host-adaptation, the human-virulent strain, F. tularensis SchuS4 also induces capsule production with the effect of reducing macrophage-activation and accelerating tularemia pathogenesis in mice. CONCLUSION: F. tularensis undergoes host-adaptation which includes production of multiple capsular materials. These capsules impede recognition of bacterial outer membrane constituents by antibody, complement, and Toll-Like Receptor 2. These changes in the host-pathogen interface have profound implications for pathogenesis and vaccine development.


Assuntos
Adaptação Fisiológica/imunologia , Imunidade Adaptativa , Cápsulas Bacterianas/biossíntese , Francisella tularensis/imunologia , Francisella tularensis/metabolismo , Imunidade Inata , Lipopolissacarídeos/biossíntese , Animais , Anticorpos Antibacterianos/imunologia , Cápsulas Bacterianas/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas do Sistema Complemento/metabolismo , Espaço Extracelular/metabolismo , Francisella tularensis/citologia , Francisella tularensis/crescimento & desenvolvimento , Humanos , Lipopolissacarídeos/química , Camundongos , Peso Molecular , Antígenos O/biossíntese , Antígenos O/química , Fenótipo , Receptor 2 Toll-Like/metabolismo , Tularemia/imunologia , Tularemia/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa