Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Am J Epidemiol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38918039

RESUMO

There is a dearth of safety data on maternal outcomes after perinatal medication exposure. Data-mining for unexpected adverse event occurrence in existing datasets is a potentially useful approach. One method, the Poisson tree-based scan statistic (TBSS), assumes that the expected outcome counts, based on incidence of outcomes in the control group, are estimated without error. This assumption may be difficult to satisfy with a small control group. Our simulation study evaluated the effect of imprecise incidence proportions from the control group on TBSS' ability to identify maternal outcomes in pregnancy research. We simulated base case analyses with "true" expected incidence proportions and compared these to imprecise incidence proportions derived from sparse control samples. We varied parameters impacting Type I error and statistical power (exposure group size, outcome's incidence proportion, and effect size). We found that imprecise incidence proportions generated by a small control group resulted in inaccurate alerting, inflation of Type I error, and removal of very rare outcomes for TBSS analysis due to "zero" background counts. Ideally, the control size should be at least several times larger than the exposure size to limit the number of false positive alerts and retain statistical power for true alerts.

2.
J Biopharm Stat ; : 1-19, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695298

RESUMO

In the drug development for rare disease, the number of treated subjects in the clinical trial is often very small, whereas the number of external controls can be relatively large. There is no clear guidance on choosing an appropriate statistical method to control baseline confounding in this situation. To fill this gap, we conduct extensive simulations to evaluate the performance of commonly used matching and weighting methods as well as the more recently developed targeted maximum likelihood estimation (TMLE) and cardinality matching in small sample settings, mimicking the motivating data from a pediatric rare disease. Among the methods examined, the performance of coarsened exact matching (CEM) and TMLE are relatively robust under various model specifications. CEM is only feasible when the number of controls far exceeds the number of treated, whereas TMLE has better performance with less extreme treatment allocation ratios. Our simulations suggest bootstrap is useful for variance estimation in small samples after matching.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa