Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(15): e2305530, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353337

RESUMO

Considerable efforts have recently been made to augment the power density of moisture-enabled electric generators. However, due to the unsustainable ion/water molecule concentration gradients, the ion-directed transport gradually diminishes, which largely affects the operating lifetime and energy efficiency of generators. This work introduces an electrode chemistry regulation strategy into the ionic diode-type energy conversion structure, which demonstrates 1240 h power generation in ambient humidity. The electrode chemical regulation can be achieved by adding Cl-. The purpose is to destroy the passivation film on the electrode interface and provide a continuous path for ion-electron coupling conduction. Moreover, this device simultaneously satisfies the requirements of fast trapping of moisture molecules, high rectification ratio transport of ions, and sustained ion-to-electron current conversion. A single device can deliver an open-circuit voltage of about 1 V and a peak short-circuit current density of 350 µA cm-2. Finally, the first-principle calculations are carried out to reveal the mechanism by which the electrode surface chemistry affects the power generation performance.

2.
Biosens Bioelectron ; 247: 115922, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096720

RESUMO

Tactile sensors play an important role in human-machine interaction (HMI). Compared to contact tactile sensing, which leaves physical hardware vulnerable to wear and tear, proximity sensing is better at reacting to remote events before physical contact. The apteronotus albifrons possess ion channel receptors for remote surroundings perception. Inspired by the relevant ion channel structure and self-powered operation mode, we designed a new proximity sensor with ion rectification characteristics and self-powered capability. This bio-inspired ion channel receptor exploits the hygroelectric effect to convert the humidity information into a series of current signals when the living organism approaches, and it is insensitive to non-aquatic non-organisms. The sensor offers high sensitivity (2.3 mm-1), a suitable range (0-10 mm) for close object detection, fast response (0.3 s), and fast recovery (2.5 s). The unique combination of bio-sensitivity, non-contact detection characteristics, and humidity-based power generation capabilities enriches the functionality of future HMI electronics. As a proof of concept, the sensor has been successfully applied in different scenarios such as human health management, early warning systems, non-contact switches to prevent virus transmission, object recognition, and finger trajectory detection.


Assuntos
Técnicas Biossensoriais , Humanos , Tato/fisiologia , Eletrônica
3.
MedComm (2020) ; 5(7): e634, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38988492

RESUMO

Mitogen-activated protein kinase-activated protein kinase 2 (MK2) emerges as a pivotal target in developing anti-cancer therapies. The limitations of ATP-competitive inhibitors, due to insufficient potency and selectivity, underscore the urgent need for a covalent irreversible MK2 inhibitor. Our initial analyses of The Cancer Genome Atlas database revealed MK2's overexpression across various cancer types, especially those characterized by inflammation, linking it to poor prognosis and highlighting its significance. Investigating MK2's kinase domain led to the identification of a unique cysteine residue, enabling the creation of targeted covalent inhibitors. Compound 11 was developed, demonstrating robust MK2 inhibition (IC50 = 2.3 nM) and high selectivity. It binds irreversibly to MK2, achieving prolonged signal suppression and reducing pathological inflammatory cytokines in macrophages. Furthermore, compound 11 or MK2 knockdown can inhibit the tumor-promoting macrophage M2 phenotype in vitro and in vivo. In macrophage-rich tumor model, compound 11 notably slowed growth in a dose-dependent manner. These findings support MK2 as a promising anticancer target, especially relevant in cancers fueled by inflammation or dominated by macrophages, and provide compound 11 serving as an invaluable chemical tool for exploring MK2's functions.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa