Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(23): 4386-4397.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995686

RESUMO

The multi-pass transmembrane protein ACCELERATED CELL DEATH 6 (ACD6) is an immune regulator in Arabidopsis thaliana with an unclear biochemical mode of action. We have identified two loci, MODULATOR OF HYPERACTIVE ACD6 1 (MHA1) and its paralog MHA1-LIKE (MHA1L), that code for ∼7 kDa proteins, which differentially interact with specific ACD6 variants. MHA1L enhances the accumulation of an ACD6 complex, thereby increasing the activity of the ACD6 standard allele for regulating plant growth and defenses. The intracellular ankyrin repeats of ACD6 are structurally similar to those found in mammalian ion channels. Several lines of evidence link increased ACD6 activity to enhanced calcium influx, with MHA1L as a direct regulator of ACD6, indicating that peptide-regulated ion channels are not restricted to animals.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anquirinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Canais Iônicos/genética , Canais Iônicos/metabolismo , Imunidade Vegetal/genética
2.
Nature ; 621(7979): 586-591, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704725

RESUMO

Many animal- and plant-pathogenic bacteria use a type III secretion system to deliver effector proteins into host cells1,2. Elucidation of how these effector proteins function in host cells is critical for understanding infectious diseases in animals and plants3-5. The widely conserved AvrE-family effectors, including DspE in Erwinia amylovora and AvrE in Pseudomonas syringae, have a central role in the pathogenesis of diverse phytopathogenic bacteria6. These conserved effectors are involved in the induction of 'water soaking' and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE-family effectors fold into a ß-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in inward and outward currents, permeability to water and osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine dendrimers as inhibitors of the DspE/AvrE channels. Notably, polyamidoamines broadly inhibit AvrE and DspE virulence activities in Xenopus oocytes and during E. amylovora and P. syringae infections. Thus, we have unravelled the biochemical function of a centrally important family of bacterial effectors with broad conceptual and practical implications in the study of bacterial pathogenesis.


Assuntos
Proteínas de Bactérias , Células Vegetais , Doenças das Plantas , Porinas , Água , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Morte Celular , Fluoresceína/metabolismo , Lipossomos/metabolismo , Oócitos/metabolismo , Oócitos/microbiologia , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Doenças das Plantas/microbiologia , Porinas/química , Porinas/metabolismo , Dobramento de Proteína , Soluções/metabolismo , Água/metabolismo , Xenopus laevis , Concentração Osmolar
3.
Nature ; 613(7942): 145-152, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517600

RESUMO

Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.


Assuntos
Capsicum , Doenças das Plantas , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Proteínas de Plantas , Receptores de Reconhecimento de Padrão , Leucina , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Receptores de Reconhecimento de Padrão/química , Receptores de Reconhecimento de Padrão/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Reconhecimento da Imunidade Inata , Capsicum/imunologia , Capsicum/metabolismo , Capsicum/virologia , Virulência
4.
Nature ; 605(7909): 332-339, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508659

RESUMO

Stomata exert considerable effects on global carbon and water cycles by mediating gas exchange and water vapour1,2. Stomatal closure prevents water loss in response to dehydration and limits pathogen entry3,4. However, prolonged stomatal closure reduces photosynthesis and transpiration and creates aqueous apoplasts that promote colonization by pathogens. How plants dynamically regulate stomatal reopening in a changing climate is unclear. Here we show that the secreted peptides SMALL PHYTOCYTOKINES REGULATING DEFENSE AND WATER LOSS (SCREWs) and the cognate receptor kinase PLANT SCREW UNRESPONSIVE RECEPTOR (NUT) counter-regulate phytohormone abscisic acid (ABA)- and microbe-associated molecular pattern (MAMP)-induced stomatal closure. SCREWs sensed by NUT function as immunomodulatory phytocytokines and recruit SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) co-receptors to relay immune signalling. SCREWs trigger the NUT-dependent phosphorylation of ABA INSENSITIVE 1 (ABI1) and ABI2, which leads to an increase in the activity of ABI phosphatases towards OPEN STOMATA 1 (OST1)-a key kinase that mediates ABA- and MAMP-induced stomatal closure5,6-and a reduction in the activity of S-type anion channels. After induction by dehydration and pathogen infection, SCREW-NUT signalling promotes apoplastic water loss and disrupts microorganism-rich aqueous habitats to limit pathogen colonization. The SCREW-NUT system is widely distributed across land plants, which suggests that it has an important role in preventing uncontrolled stomatal closure caused by abiotic and biotic stresses to optimize plant fitness.


Assuntos
Ácido Abscísico , Reguladores de Crescimento de Plantas , Imunidade Vegetal , Estômatos de Plantas , Plantas , Água , Proteínas de Arabidopsis , Desidratação , Dessecação
5.
Nature ; 607(7918): 339-344, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768511

RESUMO

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.


Assuntos
Aclimatação , Proteínas de Arabidopsis , Arabidopsis , Meio Ambiente , Aquecimento Global , Imunidade Vegetal , Temperatura , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a Calmodulina/genética , Regulação da Expressão Gênica de Plantas , Aquecimento Global/estatística & dados numéricos , Interações Hospedeiro-Patógeno , Fitocromo B , Doenças das Plantas/genética , Imunidade Vegetal/genética , Ácido Salicílico/metabolismo , Fatores de Transcrição
6.
Nature ; 592(7852): 105-109, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33692546

RESUMO

The plant immune system is fundamental for plant survival in natural ecosystems and for productivity in crop fields. Substantial evidence supports the prevailing notion that plants possess a two-tiered innate immune system, called pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is triggered by microbial patterns via cell surface-localized pattern-recognition receptors (PRRs), whereas ETI is activated by pathogen effector proteins via predominantly intracellularly localized receptors called nucleotide-binding, leucine-rich repeat receptors (NLRs)1-4. PTI and ETI are initiated by distinct activation mechanisms and involve different early signalling cascades5,6. Here we show that Arabidopsis PRR and PRR co-receptor mutants-fls2 efr cerk1 and bak1 bkk1 cerk1 triple mutants-are markedly impaired in ETI responses when challenged with incompatible Pseudomonas syrinage bacteria. We further show that the production of reactive oxygen species by the NADPH oxidase RBOHD is a critical early signalling event connecting PRR- and NLR-mediated immunity, and that the receptor-like cytoplasmic kinase BIK1 is necessary for full activation of RBOHD, gene expression and bacterial resistance during ETI. Moreover, NLR signalling rapidly augments the transcript and/or protein levels of key PTI components. Our study supports a revised model in which potentiation of PTI is an indispensable component of ETI during bacterial infection. This revised model conceptually unites two major immune signalling cascades in plants and mechanistically explains some of the long-observed similarities in downstream defence outputs between PTI and ETI.


Assuntos
Arabidopsis/imunologia , Proteínas NLR/imunologia , Imunidade Vegetal/imunologia , Receptores de Reconhecimento de Padrão/imunologia , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , NADPH Oxidases/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Pseudomonas syringae/imunologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia
7.
Nature ; 580(7805): 653-657, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350464

RESUMO

The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Redes Reguladoras de Genes/genética , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Meio Ambiente , Firmicutes/genética , Firmicutes/isolamento & purificação , Genes de Plantas/genética , Genótipo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Homeostase , Microbiota/genética , Microbiota/fisiologia , Mutação , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteobactérias/genética , Proteobactérias/isolamento & purificação
9.
Proc Natl Acad Sci U S A ; 119(14): e2114460119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344425

RESUMO

SignificancePlants evolved in an environment colonized by a vast number of microbes, which collectively constitute the plant microbiota. The majority of microbiota taxa are nonpathogenic and may be beneficial to plants under certain ecological or environmental conditions. We conducted experiments to understand the features of long-term interactions of nonpathogenic microbiota members with plants. We found that a multiplication-death equilibrium explained the shared long-term static populations of nonpathogenic bacteria and that in planta bacterial transcriptomic signatures were characteristic of the stationary phase, a physiological state in which stress protection responses are induced. These results may have significant implications in understanding the bulk of "nonpathogenic" plant-microbiota interactions that occur in agricultural and natural ecosystems.


Assuntos
Microbiota , Transcriptoma , Bactérias/genética , Microbiota/genética , Folhas de Planta/microbiologia , Plantas/microbiologia
11.
PLoS Pathog ; 17(4): e1009472, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886694

RESUMO

A diverse community of microorganisms inhabits various parts of a plant. Recent findings indicate that perturbations to the normal microbiota can be associated with positive and negative effects on plant health. In this review, we discuss these findings in the context of understanding how microbiota homeostasis is regulated in plants for promoting health and/or for preventing dysbiosis.


Assuntos
Disbiose/prevenção & controle , Microbiota , Plantas/microbiologia , Homeostase , Humanos
12.
Plant Cell ; 32(3): 595-611, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31888968

RESUMO

A hallmark of multicellular organisms is their ability to maintain physiological homeostasis by communicating among cells, tissues, and organs. In plants, intercellular communication is largely dependent on plasmodesmata (PD), which are membrane-lined channels connecting adjacent plant cells. Upon immune stimulation, plants close PD as part of their immune responses. Here, we show that the bacterial pathogen Pseudomonas syringae deploys an effector protein, HopO1-1, that modulates PD function. HopO1-1 is required for P. syringae to spread locally to neighboring tissues during infection. Expression of HopO1-1 in Arabidopsis (Arabidopsis thaliana) increases the distance of PD-dependent molecular flux between neighboring plant cells. Being a putative ribosyltransferase, the catalytic activity of HopO1-1 is required for regulation of PD. HopO1-1 physically interacts with and destabilizes the plant PD-located protein PDLP7 and possibly PDLP5. Both PDLPs are involved in bacterial immunity. Our findings reveal that a pathogenic bacterium utilizes an effector to manipulate PD-mediated host intercellular communication for maximizing the spread of bacterial infection.


Assuntos
Arabidopsis/microbiologia , Plasmodesmos/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento , Pseudomonas syringae/patogenicidade , Adenosina Difosfato Ribose/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Imunidade Vegetal , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Transporte Proteico , Pseudomonas syringae/imunologia , Virulência
13.
New Phytol ; 236(4): 1422-1440, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36068953

RESUMO

Rice false smut caused by Ustilaginoidea virens is becoming one of the most recalcitrant rice diseases worldwide. However, the molecular mechanisms underlying rice immunity against U. virens remain unknown. Using genetic, biochemical and disease resistance assays, we demonstrated that the xb24 knockout lines generated in non-Xa21 rice background exhibit an enhanced susceptibility to the fungal pathogens U. virens and Magnaporthe oryzae. Consistently, flg22- and chitin-induced oxidative burst and expression of pathogenesis-related genes in the xb24 knockout lines were greatly attenuated. As a central mediator of energy signaling, SnRK1A interacts with and phosphorylates XB24 at Thr83 residue to promote ATPase activity. SnRK1A is activated by pathogen-associated molecular patterns and positively regulates plant immune responses and disease resistance. Furthermore, the virulence effector SCRE1 in U. virens targets host ATPase XB24. The interaction inhibits ATPase activity of XB24 by blocking ATP binding to XB24. Meanwhile, SCRE1 outcompetes SnRK1A for XB24 binding, and thereby suppresses SnRK1A-mediated phosphorylation and ATPase activity of XB24. Our results indicate that the conserved SnRK1A-XB24 module in multiple crop plants positively contributes to plant immunity and uncover an unidentified molecular strategy to promote infection in U. virens and a novel host target in fungal pathogenesis.


Assuntos
Oryza , Oryza/metabolismo , Adenosina Trifosfatases/metabolismo , Fosforilação , Doenças das Plantas/microbiologia , Resistência à Doença , Moléculas com Motivos Associados a Patógenos/metabolismo , Quitina/metabolismo , Trifosfato de Adenosina/metabolismo
14.
Nature ; 539(7630): 524-529, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27882964

RESUMO

High humidity has a strong influence on the development of numerous diseases affecting the above-ground parts of plants (the phyllosphere) in crop fields and natural ecosystems, but the molecular basis of this humidity effect is not understood. Previous studies have emphasized immune suppression as a key step in bacterial pathogenesis. Here we show that humidity-dependent, pathogen-driven establishment of an aqueous intercellular space (apoplast) is another important step in bacterial infection of the phyllosphere. Bacterial effectors, such as Pseudomonas syringae HopM1, induce establishment of the aqueous apoplast and are sufficient to transform non-pathogenic P. syringae strains into virulent pathogens in immunodeficient Arabidopsis thaliana under high humidity. Arabidopsis quadruple mutants simultaneously defective in a host target (AtMIN7) of HopM1 and in pattern-triggered immunity could not only be used to reconstitute the basic features of bacterial infection, but also exhibited humidity-dependent dyshomeostasis of the endophytic commensal bacterial community in the phyllosphere. These results highlight a new conceptual framework for understanding diverse phyllosphere-bacterial interactions.


Assuntos
Arabidopsis/microbiologia , Interações Hospedeiro-Patógeno , Umidade , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas syringae/patogenicidade , Água/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Bactérias/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Homeostase , Tolerância Imunológica , Doenças das Plantas/imunologia , Imunidade Vegetal , Folhas de Planta/imunologia , Pseudomonas syringae/genética , Pseudomonas syringae/imunologia , Pseudomonas syringae/metabolismo , Simbiose , Virulência/imunologia
15.
Proc Natl Acad Sci U S A ; 116(47): 23390-23397, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31712429

RESUMO

For the past 4 decades, intensive molecular studies of mostly leaf mesophyll cell-infecting pathogens and chewing insects have led to compelling models of plant-pathogen and plant-insect interactions. Yet, some of the most devastating pathogens and insect pests live in or feed on the phloem, a systemic tissue belonging to the plant vascular system. Phloem tissues are difficult to study, and phloem-inhabiting pathogens are often impossible to culture, thus limiting our understanding of phloem-insect/pathogen interactions at a molecular level. In this Perspective, we highlight recent literature that reports significant advances in the understanding of phloem interactions with insects and prokaryotic pathogens and attempt to identify critical questions that need attention for future research. It is clear that study of phloem-insect/pathogen interactions represents an exciting frontier of plant science, and influx of new scientific expertise and funding is crucial to achieve faster progress in this important area of research that is integral to global food security.


Assuntos
Insetos/fisiologia , Floema , Plantas/parasitologia , Animais , Comportamento Alimentar , Interações Hospedeiro-Parasita , Floema/microbiologia , Plantas/imunologia , Células Procarióticas/fisiologia
16.
Plant Physiol ; 184(2): 792-805, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32759268

RESUMO

Citrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (Las), is one of the most destructive citrus diseases worldwide, yet how Las causes HLB is poorly understood. Here we show that a Las-secreted protein, SDE15 (CLIBASIA_04025), suppresses plant immunity and promotes Las multiplication. Transgenic expression of SDE15 in Duncan grapefruit (Citrus × paradisi) suppresses the hypersensitive response induced by Xanthomonas citri ssp. citri (Xcc) and reduces the expression of immunity-related genes. SDE15 also suppresses the hypersensitive response triggered by the Xanthomonas vesicatoria effector protein AvrBsT in Nicotiana benthamiana, suggesting that it may be a broad-spectrum suppressor of plant immunity. SDE15 interacts with the citrus protein CsACD2, a homolog of Arabidopsis (Arabidopsis thaliana) ACCELERATED CELL DEATH 2 (ACD2). SDE15 suppression of plant immunity is dependent on CsACD2, and overexpression of CsACD2 in citrus suppresses plant immunity and promotes Las multiplication, phenocopying overexpression of SDE15. Identification of CsACD2 as a susceptibility target has implications in genome editing for novel plant resistance against devastating HLB.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Arabidopsis/fisiologia , Proteínas de Bactérias/fisiologia , Citrus sinensis/imunologia , Interações Hospedeiro-Patógeno/imunologia , Liberibacter/fisiologia , Oxirredutases/fisiologia , Proteínas de Bactérias/isolamento & purificação , Citrus sinensis/metabolismo , Imunidade Vegetal , Plantas Geneticamente Modificadas
17.
Nature ; 525(7568): 269-73, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26258305

RESUMO

The plant hormone jasmonate plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development. Key mediators of jasmonate signalling include MYC transcription factors, which are repressed by jasmonate ZIM-domain (JAZ) transcriptional repressors in the resting state. In the presence of active jasmonate, JAZ proteins function as jasmonate co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase. The hormone-dependent formation of the COI1-JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins from transcriptional repression. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. Here we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partly unwound helix, forms a complete α-helix that displaces the amino (N)-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Our structural and functional studies elucidate a dynamic molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.


Assuntos
Proteínas de Arabidopsis/antagonistas & inibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transdução de Sinais , Transativadores/antagonistas & inibidores , Transativadores/química , Motivos de Aminoácidos , Apoproteínas/química , Apoproteínas/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ligação Competitiva/genética , Cristalografia por Raios X , Proteínas de Ligação a DNA , Modelos Moleculares , Proteínas Nucleares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/genética , Conformação Proteica , Proteínas Repressoras/genética , Transativadores/genética , Transativadores/metabolismo , Ubiquitinação
18.
Proc Natl Acad Sci U S A ; 115(22): E5203-E5212, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29760094

RESUMO

The unfolded protein response (UPR) is an ancient signaling pathway designed to protect cells from the accumulation of unfolded and misfolded proteins in the endoplasmic reticulum (ER). Because misregulation of the UPR is potentially lethal, a stringent surveillance signaling system must be in place to modulate the UPR. The major signaling arms of the plant UPR have been discovered and rely on the transcriptional activity of the transcription factors bZIP60 and bZIP28 and on the kinase and ribonuclease activity of IRE1, which splices mRNA to activate bZIP60. Both bZIP28 and bZIP60 modulate UPR gene expression to overcome ER stress. In this study, we demonstrate at a genetic level that the transcriptional role of bZIP28 and bZIP60 in ER-stress responses is antagonized by nonexpressor of PR1 genes 1 (NPR1), a critical redox-regulated master regulator of salicylic acid (SA)-dependent responses to pathogens, independently of its role in SA defense. We also establish that the function of NPR1 in the UPR is concomitant with ER stress-induced reduction of the cytosol and translocation of NPR1 to the nucleus where it interacts with bZIP28 and bZIP60. Our results support a cellular role for NPR1 as well as a model for plant UPR regulation whereby SA-independent ER stress-induced redox activation of NPR1 suppresses the transcriptional role of bZIP28 and bZIP60 in the UPR.


Assuntos
Proteínas de Arabidopsis/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Retículo Endoplasmático/genética , Ácido Salicílico/metabolismo
19.
Proc Natl Acad Sci U S A ; 115(13): E3055-E3064, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531038

RESUMO

Plant pathogens can cause serious diseases that impact global agriculture. The plant innate immunity, when fully activated, can halt pathogen growth in plants. Despite extensive studies into the molecular and genetic bases of plant immunity against pathogens, the influence of plant immunity in global pathogen metabolism to restrict pathogen growth is poorly understood. Here, we developed RNA sequencing pipelines for analyzing bacterial transcriptomes in planta and determined high-resolution transcriptome patterns of the foliar bacterial pathogen Pseudomonas syringae in Arabidopsis thaliana with a total of 27 combinations of plant immunity mutants and bacterial strains. Bacterial transcriptomes were analyzed at 6 h post infection to capture early effects of plant immunity on bacterial processes and to avoid secondary effects caused by different bacterial population densities in planta We identified specific "immune-responsive" bacterial genes and processes, including those that are activated in susceptible plants and suppressed by plant immune activation. Expression patterns of immune-responsive bacterial genes at the early time point were tightly linked to later bacterial growth levels in different host genotypes. Moreover, we found that a bacterial iron acquisition pathway is commonly suppressed by multiple plant immune-signaling pathways. Overexpression of a P. syringae sigma factor gene involved in iron regulation and other processes partially countered bacterial growth restriction during the plant immune response triggered by AvrRpt2. Collectively, this study defines the effects of plant immunity on the transcriptome of a bacterial pathogen and sheds light on the enigmatic mechanisms of bacterial growth inhibition during the plant immune response.


Assuntos
Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Pseudomonas syringae/genética , Transcriptoma , Arabidopsis/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Pseudomonas syringae/crescimento & desenvolvimento
20.
J Environ Manage ; 298: 113503, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426212

RESUMO

Microbial pathogen contamination is a leading cause of impairment for urban rivers and streams in Michigan. Reports on the ability of green infrastructure best management practices to remove microbial pathogens have been highly variable. This study evaluated the influence of a detention basin (Kreiser Pond) on microbial dynamics in the Plaster Creek watershed in West Michigan. High levels of fecal indicator bacteria and coliphage were documented in influent and effluent water, with significant increases in indicator microbe concentrations during storm events. In dry conditions, Kreiser Pond efficiently reduced the number of indicator microbes flowing through the basin. Rainfall volume had a greater influence on the diversity of bacteria than sampling location. Antibiotic resistance was prevalent in culturable E. coli from Kreiser Pond, demonstrating a potential public health risk and highlighting the need for identifying the ultimate sources of microbial pollution.


Assuntos
Lagoas , Microbiologia da Água , Monitoramento Ambiental , Escherichia coli , Fezes , Rios
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa