RESUMO
Sponge gourd fruit skin color is an important quality-related trait because it substantially influences consumer preferences. However, little is known about the miRNAs and genes regulating sponge gourd fruit skin coloration. This study involved an integrated analysis of the transcriptome, sRNAome, and degradome of sponge gourd fruit skins with green skin (GS) and white skin (WS). A total of 4,331 genes were differentially expressed between the GS and WS, with 2,442 down-regulated and 1,889 up-regulated genes in WS. The crucial genes involved in chlorophyll metabolism, chloroplast development, and chloroplast protection were identified (e.g., HEMA, CHLM, CRD1, POR, CAO, CLH, SGR, CAB, BEL1-like, KNAT, ARF, and peroxidase genes). Additionally, 167 differentially expressed miRNAs were identified, with 70 up-regulated and 97 down-regulated miRNAs in WS. Degradome sequencing identified 125 differentially expressed miRNAs and their 521 differentially expressed target genes. The miR156, miR159, miR166, miR167, miR172, and miR393 targeted the genes involved in chlorophyll metabolism, chloroplast development, and chloroplast protection. Moreover, a flavonoid biosynthesis regulatory network was established involving miR159, miR166, miR169, miR319, miR390, miR396, and their targets CHS, 4CL, bHLH, and MYB. The qRT-PCR data for the differentially expressed genes were generally consistent with the transcriptome results. Subcellular localization analysis of selected proteins revealed their locations in different cellular compartments, including nucleus, cytoplasm and endoplasmic reticulum. The study findings revealed the important miRNAs, their target genes, and the regulatory network controlling fruit skin coloration in sponge gourd.